Showing 1 - 10 of 1,648
We produce a social unrest risk index for 125 countries covering a period of 1996 to 2020. The risk of social unrest is based on the probability of unrest in the following year derived from a machine learning model drawing on over 340 indicators covering a wide range of macro-financial,...
Persistent link: https://www.econbiz.de/10012796240
An essential element of the work of the Fund is to monitor and forecast international trade. This paper uses SWIFT messages on letters of credit, together with crude oil prices and new export orders of manufacturing Purchasing Managers' Index (PMI), to improve the short-term forecast of...
Persistent link: https://www.econbiz.de/10012392595
We introduce unFEAR, Unsupervised Feature Extraction Clustering, to identify economic crisis regimes. Given labeled crisis and non-crisis episodes and the corresponding features values, unFEAR uses unsupervised representation learning and a novel mode contrastive autoencoder to group episodes...
Persistent link: https://www.econbiz.de/10012392653
structures across countries and selects the optimal pool of countries to maximize out-of-sample prediction accuracy of a model … improve forecast accuracy relative to alternative pools. The algortihm improves nowcast performance for advanced economies, as …
Persistent link: https://www.econbiz.de/10012251287
We develop a framework to nowcast (and forecast) economic variables with machine learning techniques. We explain how machine learning methods can address common shortcomings of traditional OLS-based models and use several machine learning models to predict real output growth with lower forecast...
Persistent link: https://www.econbiz.de/10012251288
In recent years, Fund staff has prepared cross-country analyses of macroeconomic vulnerabilities in low-income countries, focusing on the risk of sharp declines in economic growth and of debt distress. We discuss routes to broadening this focus by adding several macroeconomic and macrofinancial...
Persistent link: https://www.econbiz.de/10012486148
This paper extends earlier research by adding SWIFT data on documentary collections to the short-term forecast of international trade. While SWIFT documentary collections accounted for just over one percent of world trade financing in 2020, they have strong explanatory power to forecast world...
Persistent link: https://www.econbiz.de/10012794915
longer horizons, the paper calls into question the usefulness of judgment-based medium and long-run forecasts for policy … analysis, including for debt sustainability assessments, and points to statistical methods to improve forecast accuracy by …
Persistent link: https://www.econbiz.de/10011978442
This paper describes recent work to strengthen nowcasting capacity at the IMF's European department. It motivates and compiles datasets of standard and nontraditional variables, such as Google search and air quality. It applies standard dynamic factor models (DFMs) and several machine learning...
Persistent link: https://www.econbiz.de/10013169983
Forecasting macroeconomic variables is key to developing a view on a country's economic outlook. Most traditional forecasting models rely on fitting data to a pre-specified relationship between input and output variables, thereby assuming a specific functional and stochastic process underlying...
Persistent link: https://www.econbiz.de/10011932417