Showing 1 - 10 of 1,607
This paper introduces the quantile regression- based Distance-to-Default to Probability of Default (DD-PD) mapping, which links individual firms' DD to their real world PD. Since changes in the DD depend on a handful of parameters, the mapping easily accommodates shocks arising from quantitative...
Persistent link: https://www.econbiz.de/10012613371
We produce a social unrest risk index for 125 countries covering a period of 1996 to 2020. The risk of social unrest is based on the probability of unrest in the following year derived from a machine learning model drawing on over 340 indicators covering a wide range of macro-financial,...
Persistent link: https://www.econbiz.de/10012796240
With public debt soaring across the world, a growing concern is whether current debt levels are a harbinger of fiscal crises, thereby restricting the policy space in a downturn. The empirical evidence to date is however inconclusive, and the true cost of debt may be overstated if interest rates...
Persistent link: https://www.econbiz.de/10012170046
Forecasting macroeconomic variables is key to developing a view on a country's economic outlook. Most traditional forecasting models rely on fitting data to a pre-specified relationship between input and output variables, thereby assuming a specific functional and stochastic process underlying...
Persistent link: https://www.econbiz.de/10011932417
An essential element of the work of the Fund is to monitor and forecast international trade. This paper uses SWIFT messages on letters of credit, together with crude oil prices and new export orders of manufacturing Purchasing Managers' Index (PMI), to improve the short-term forecast of...
Persistent link: https://www.econbiz.de/10012392595
We introduce unFEAR, Unsupervised Feature Extraction Clustering, to identify economic crisis regimes. Given labeled crisis and non-crisis episodes and the corresponding features values, unFEAR uses unsupervised representation learning and a novel mode contrastive autoencoder to group episodes...
Persistent link: https://www.econbiz.de/10012392653
Machine learning tools are well known for their success in prediction. But prediction is not causation, and causal discovery is at the core of most questions concerning economic policy. Recently, however, the literature has focused more on issues of causality. This paper gently introduces some...
Persistent link: https://www.econbiz.de/10012154563
We leverage insights from machine learning to optimize the tradeoff between bias and variance when estimating economic models using pooled datasets. Specifically, we develop a simple algorithm that estimates the similarity of economic structures across countries and selects the optimal pool of...
Persistent link: https://www.econbiz.de/10012251287
We develop a framework to nowcast (and forecast) economic variables with machine learning techniques. We explain how machine learning methods can address common shortcomings of traditional OLS-based models and use several machine learning models to predict real output growth with lower forecast...
Persistent link: https://www.econbiz.de/10012251288
In recent years, Fund staff has prepared cross-country analyses of macroeconomic vulnerabilities in low-income countries, focusing on the risk of sharp declines in economic growth and of debt distress. We discuss routes to broadening this focus by adding several macroeconomic and macrofinancial...
Persistent link: https://www.econbiz.de/10012486148