Showing 1 - 4 of 4
In this paper, we study the latent group structure in cryptocurrencies market by forming a dynamic return inferred network with coin attributions. We develop a dynamic covariate-assisted spectral clustering method to detect the communities in dynamic network framework and prove its uniform...
Persistent link: https://www.econbiz.de/10012433181
Cryptocurrencies are becoming an attractive asset class and are the focus of recent quantitative research. The joint dynamics of the cryptocurrency market yields information on network risk. Utilizing the adaptive LASSO approach, we build a dynamic network of cryptocurrencies and model the...
Persistent link: https://www.econbiz.de/10012433223
The 2017 bubble on the cryptocurrency market recalls our memory in the dot-com bubble, during which hard-to-measure fundamentals and investors’ illusion for brand new technologies led to overvalued prices. Benefiting from the massive increase in the volume of messages published on social media...
Persistent link: https://www.econbiz.de/10012433230
Cryptocurrencies return cross-predictability and technological similarity yield information on risk propagation and market segmentation. To investigate these effects, we build a timevarying network for cryptocurrencies, based on the evolution of return cross-predictability and technological...
Persistent link: https://www.econbiz.de/10012619641