Showing 1 - 10 of 343
Since the late 90s, Regression Discontinuity (RD) designs have been widely used to estimate Local Average Treatment Effects (LATE). When the running variable is observed with continuous measurement error, identification fails. Assuming non-differential measurement error, we propose a consistent...
Persistent link: https://www.econbiz.de/10012955015
Identification in a regression discontinuity (RD) design hinges on the discontinuity in the probability of treatment when a covariate (assignment variable) exceeds a known threshold. If the assignment variable is measured with error, however, the discontinuity in the first stage relationship...
Persistent link: https://www.econbiz.de/10012979862
A growing body of evidence suggests large increases in criminal behavior and mortality coinciding with a young adult's 21st birthday, when alcohol consumption becomes legal. The policy implications from these findings have focused on the need to reduce drinking among young people, potentially by...
Persistent link: https://www.econbiz.de/10012915177
Researchers are often interested in estimating the causal effect of some treatment on individual criminality. For example, two recent relatively prominent papers have attempted to estimate the respective direct effects of marriage and gang participation on individual criminal activity. One...
Persistent link: https://www.econbiz.de/10013155604
We consider nonparametric identification and estimation in a nonseparable model where a continuous regressor of interest is a known, deterministic, but kinked function of an observed assignment variable. This design arises in many institutional settings where a policy variable (such as weekly...
Persistent link: https://www.econbiz.de/10013029646
When the running variable in a regression discontinuity (RD) design is measured with error, identification of the local average treatment effect of interest will typically fail. While the form of this measurement error varies across applications, in many cases the measurement error structure is...
Persistent link: https://www.econbiz.de/10012868822
It is standard practice in applied work to rely on linear least squares regression to estimate the effect of a binary variable ("treatment") on some outcome of interest. In this paper I study the interpretation of the regression estimand when treatment effects are in fact heterogeneous.I show...
Persistent link: https://www.econbiz.de/10013012020
Estimating the rate of return to a university degree has always been difficult due to the problem of omitted variable biases. Benefiting from a special feature of the University Admission system in China, which has clear cutoffs for university entry, combined with a unique data set with...
Persistent link: https://www.econbiz.de/10013147860
This paper shows nonparametric identification of quantile treatment effects (QTE) in the regression discontinuity design. The distributional impacts of social programs such as welfare, education, training programs and unemployment insurance are of large interest to economists. QTE are an...
Persistent link: https://www.econbiz.de/10013069679
This paper shows nonparametric identification of quantile treatment effects (QTE) in the regression discontinuity design (RDD) and proposes simple estimators. Quantile treatment effects are a very helpful tool to characterize the effects of certain interventions on the outcome distribution. The...
Persistent link: https://www.econbiz.de/10013325034