Showing 1 - 10 of 137
We consider the identification of and inference on a partially linear model, when the outcome of interest and some of the covariates are observed in two different datasets that cannot be linked. This type of data combination problem arises very frequently in empirical microeconomics. Using...
Persistent link: https://www.econbiz.de/10013351769
This paper discusses pairing double/debiased machine learning (DDML) with stacking, a model averaging method for combining multiple candidate learners, to estimate structural parameters. We introduce two new stacking approaches for DDML: short-stacking exploits the cross-fitting step of DDML to...
Persistent link: https://www.econbiz.de/10014469867
A large part of the recent literature on program evaluation has focused on estimation of the average effect of the treatment under assumptions of unconfoundedness or ignorability following the seminal work by Rubin (1974) and Rosenbaum and Rubin (1983). In many cases however, researchers are...
Persistent link: https://www.econbiz.de/10010267658
This paper uses the control function to develop a framework for testing for selection bias. The idea behind our framework is if the usual assumptions hold for matching or IV estimators, the control function identifies the presence and magnitude of potential selection bias. Averaging this...
Persistent link: https://www.econbiz.de/10010421152
We derive nonparametric sharp bounds on average treatment effects with an instrumental variable (IV) and use them to evaluate the effectiveness of the Job Corps (JC) training program for disadvantaged youth. We concentrate on the population average treatment effect (ATE) and the average...
Persistent link: https://www.econbiz.de/10011401779
Uncovering the heterogeneity of causal effects of policies and business decisions at various levels of granularity provides substantial value to decision makers. This paper develops new estimation and inference procedures for multiple treatment models in a selection-on-observables frame-work by...
Persistent link: https://www.econbiz.de/10011984600
This paper uses the control function to develop a framework for testing for selection bias. The idea behind our framework is if the usual assumptions hold for matching or IV estimators, the control function identifies the presence and magnitude of potential selection bias. Averaging this...
Persistent link: https://www.econbiz.de/10010959550
Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of...
Persistent link: https://www.econbiz.de/10005763611
A large part of the recent literature on program evaluation has focused on estimation of the average effect of the treatment under assumptions of unconfoundedness or ignorability following the seminal work by Rubin (1974) and Rosenbaum and Rubin (1983). In many cases however, researchers are...
Persistent link: https://www.econbiz.de/10005761749
Knowledge of treatment effect heterogeneity or "essential heterogeneity" plays an important role in our understanding of how programs work and in the design of systems to allocate them among the eligible. This paper provides a relatively non-technical survey of the current state of the treatment...
Persistent link: https://www.econbiz.de/10013351690