Showing 1 - 4 of 4
Andrieu et al. (2010) prove that Markov chain Monte Carlo samplers still converge to the correct posterior distribution of the model parameters when the likelihood estimated by the particle filter (with a finite number of particles) is used instead of the likelihood. A critical issue for...
Persistent link: https://www.econbiz.de/10011052243
We consider efficient methods for likelihood inference applied to structural models. In particular, we introduce a particle filter method which concentrates upon disturbances in the Markov state of the approximating solution to the structural model. A particular feature of such models is that...
Persistent link: https://www.econbiz.de/10010753480
In this paper, a method is introduced for approximating the likelihood for the unknown parameters of a state space model. The approximation converges to the true likelihood as the simulation size goes to infinity. In addition, the approximating likelihood is continuous as a function of the...
Persistent link: https://www.econbiz.de/10010574072
This paper uses free-knot and fixed-knot regression splines in a Bayesian context to develop methods for the nonparametric estimation of functions subject to shape constraints in models with log-concave likelihood functions. The shape constraints we consider include monotonicity, convexity and...
Persistent link: https://www.econbiz.de/10008866562