Showing 1 - 4 of 4
Estimating gradients is of crucial importance across a broad range of applied economic domains. Here we consider data-driven bandwidth selection based on the gradient of an unknown regression function. This is a difficult problem given that direct observation of the value of the gradient is...
Persistent link: https://www.econbiz.de/10011117420
In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a...
Persistent link: https://www.econbiz.de/10005228693
Nonparametric estimators provide a flexible means of uncovering salient features of auction data. Although these estimators are popular in the literature, many key features necessary for proper implementation have yet to be uncovered. Here we provide several suggestions for nonparametric...
Persistent link: https://www.econbiz.de/10010574086
In this paper we propose a very flexible estimator in the context of truncated regression that does not require parametric assumptions. To do this, we adapt the theory of local maximum likelihood estimation. We provide the asymptotic results and illustrate the performance of our estimator on...
Persistent link: https://www.econbiz.de/10005285337