Showing 1 - 9 of 9
Classical estimation techniques for linear models either are inconsistent, or perform rather poorly, under α-stable error densities; most of them are not even rate-optimal. In this paper, we propose an original one-step R-estimation method and investigate its asymptotic performances under...
Persistent link: https://www.econbiz.de/10011052279
We suggest improved tests for cointegration rank in the vector autoregressive (VAR) model and develop asymptotic distribution theory and local power results. The tests are (quasi-)likelihood ratio tests based on a Gaussian likelihood, but as usual the asymptotic results do not require normally...
Persistent link: https://www.econbiz.de/10011077610
We investigate the behavior of various standard and modified F, likelihood ratio (LR), and Lagrange multiplier (LM) tests in linear homoskedastic regressions, adapting an alternative asymptotic framework in which the number of regressors and possibly restrictions grows proportionately to the...
Persistent link: https://www.econbiz.de/10011052224
We analyze optimality properties of maximum likelihood (ML) and other estimators when the problem does not necessarily fall within the locally asymptotically normal (LAN) class, therefore covering cases that are excluded from conventional LAN theory such as unit root nonstationary time series....
Persistent link: https://www.econbiz.de/10011052329
Many estimation methods of truncated and censored regression models such as the maximum likelihood and symmetrically censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a semiparametric general trimmed estimator (GTE) of truncated...
Persistent link: https://www.econbiz.de/10011052333
This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite...
Persistent link: https://www.econbiz.de/10010574061
Central limit theorems are developed for instrumental variables estimates of linear and semiparametric partly linear regression models for spatial data. General forms of spatial dependence and heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss...
Persistent link: https://www.econbiz.de/10010574069
We analyze the applicability of standard normal asymptotic theory for linear process models near the boundary of stationarity. Limit results are given for estimation of the mean, autocovariance and autocorrelation functions within the broad region of stationarity that includes near boundary...
Persistent link: https://www.econbiz.de/10010664694
This paper studies the asymptotic properties of partitioning estimators of the conditional expectation function and its derivatives. Mean-square and uniform convergence rates are established and shown to be optimal under simple and intuitive conditions. The uniform rate explicitly accounts for...
Persistent link: https://www.econbiz.de/10010664696