Showing 1 - 10 of 148
We investigate the finite sample properties of a large number of estimators for the average treatment effect on the treated that are suitable when adjustment for observed covariates is required, like inverse probability weighting, kernel and other variants of matching, as well as different...
Persistent link: https://www.econbiz.de/10010664687
This paper presents a simple approach to deal with sample selection in models with multiplicative errors. Models for non-negative limited dependent variables such as counts fit this framework. The approach builds on a specification of the conditional mean of the outcome only and is, therefore,...
Persistent link: https://www.econbiz.de/10011117417
This paper proposes empirical likelihood based inference methods for causal effects identified from regression discontinuity designs. We consider both the sharp and fuzzy regression discontinuity designs and treat the regression functions as nonparametric. The proposed inference procedures do...
Persistent link: https://www.econbiz.de/10011209288
This paper presents estimation methods and asymptotic theory for the analysis of a nonparametrically specified conditional quantile process. Two estimators based on local linear regressions are proposed. The first estimator applies simple inequality constraints while the second uses...
Persistent link: https://www.econbiz.de/10011190723
This paper proposes closed-form estimators for nonparametric regressions using two measurements with non-classical errors. One (administrative) measurement has location-/scale-normalized errors, but the other (survey) measurement has endogenous errors with arbitrary location and scale. For this...
Persistent link: https://www.econbiz.de/10011190728
In nonparametric instrumental variables estimation, the mapping that identifies the function of interest, g, is discontinuous and must be regularized to permit consistent estimation. The optimal regularization parameter depends on population characteristics that are unknown in applications. This...
Persistent link: https://www.econbiz.de/10010776910
A new uniform expansion is introduced for sums of weighted kernel-based regression residuals from nonparametric or semiparametric models. This expansion is useful for deriving asymptotic properties of semiparametric estimators and test statistics with data-dependent bandwidths, random trimming,...
Persistent link: https://www.econbiz.de/10011052227
We propose semiparametric GMM estimation of semiparametric spatial autoregressive (SAR) models under weak moment conditions. In comparison with the quasi-maximum-likelihood-based semiparametric estimator of Su and Jin (2010), we allow for both heteroscedasticity and spatial dependence in the...
Persistent link: https://www.econbiz.de/10011052236
We introduce a nonparametric estimator for local quantile treatment effects in the regression discontinuity (RD) design. The procedure uses local distribution regression to estimate the marginal distributions of the potential outcomes. We illustrate the procedure through Monte Carlo simulations...
Persistent link: https://www.econbiz.de/10011052292
Many estimation methods of truncated and censored regression models such as the maximum likelihood and symmetrically censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a semiparametric general trimmed estimator (GTE) of truncated...
Persistent link: https://www.econbiz.de/10011052333