Showing 1 - 10 of 178
In the presence of heteroscedasticity and autocorrelation of unknown forms, the covariance matrix of the parameter estimator is often estimated using a nonparametric kernel method that involves a lag truncation parameter. Depending on whether this lag truncation parameter is specified to grow at...
Persistent link: https://www.econbiz.de/10010730135
Multiple time series data may exhibit clustering over time and the clustering effect may change across different series. This paper is motivated by the Bayesian non-parametric modelling of the dependence between clustering effects in multiple time series analysis. We follow a Dirichlet process...
Persistent link: https://www.econbiz.de/10010795333
Since the pioneering work by Granger (1969), many authors have proposed tests of causality between economic time series. Most of them are concerned only with “linear causality in mean”, or if a series linearly affects the (conditional) mean of the other series. It is no doubt of primary...
Persistent link: https://www.econbiz.de/10011052237
This paper establishes the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi-nonparametric time series models. We show that, even when the sieve score process is not a martingale difference sequence, the asymptotic variance in the case of irregular...
Persistent link: https://www.econbiz.de/10011052270
We develop new procedures for maximum likelihood estimation of affine term structure models with spanned or unspanned stochastic volatility. Our approach uses linear regression to reduce the dimension of the numerical optimization problem yet it produces the same estimator as maximizing the...
Persistent link: https://www.econbiz.de/10011190721
In this paper, a method is introduced for approximating the likelihood for the unknown parameters of a state space model. The approximation converges to the true likelihood as the simulation size goes to infinity. In addition, the approximating likelihood is continuous as a function of the...
Persistent link: https://www.econbiz.de/10010574072
This paper proposes a single-index semiparametric model in which the unknown function has cross-sectional unit specific weights. The initial motivation comes from the search for a better measure of liquidity in stock trading which is captured by the unknown function here. The model is estimated...
Persistent link: https://www.econbiz.de/10011077588
This paper provides a nonparametric test of the specification of a transformation model. Specifically, we test whether an observable outcome Y is monotonic in the sum of a function of observable covariates X plus an unobservable error U. Transformation models of this form are commonly assumed in...
Persistent link: https://www.econbiz.de/10011077604
This paper develops two tests for parametric volatility function of a diffusion model based on Khmaladze (1981)’s martingale transformation. The tests impose no restrictions on the functional form of the drift function and are shown to be asymptotically distribution-free. The tests are...
Persistent link: https://www.econbiz.de/10011077605
We develop new methods for the estimation of time-varying risk-neutral jump tails in asset returns. In contrast to existing procedures based on tightly parameterized models, our approach imposes much fewer structural assumptions, relying on extreme-value theory approximations together with...
Persistent link: https://www.econbiz.de/10011077613