Showing 1 - 10 of 241
We propose inverse probability weighted estimators for the distribution functions of the potential outcomes under the unconfoundedness assumption and apply the inverse mapping to obtain the quantile functions. We show that these estimators converge weakly to zero mean Gaussian processes. A...
Persistent link: https://www.econbiz.de/10010730121
In nonparametric instrumental variables estimation, the mapping that identifies the function of interest, g, is discontinuous and must be regularized to permit consistent estimation. The optimal regularization parameter depends on population characteristics that are unknown in applications. This...
Persistent link: https://www.econbiz.de/10010776910
A new uniform expansion is introduced for sums of weighted kernel-based regression residuals from nonparametric or semiparametric models. This expansion is useful for deriving asymptotic properties of semiparametric estimators and test statistics with data-dependent bandwidths, random trimming,...
Persistent link: https://www.econbiz.de/10011052227
We propose semiparametric GMM estimation of semiparametric spatial autoregressive (SAR) models under weak moment conditions. In comparison with the quasi-maximum-likelihood-based semiparametric estimator of Su and Jin (2010), we allow for both heteroscedasticity and spatial dependence in the...
Persistent link: https://www.econbiz.de/10011052236
We introduce a nonparametric estimator for local quantile treatment effects in the regression discontinuity (RD) design. The procedure uses local distribution regression to estimate the marginal distributions of the potential outcomes. We illustrate the procedure through Monte Carlo simulations...
Persistent link: https://www.econbiz.de/10011052292
censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a …
Persistent link: https://www.econbiz.de/10011052333
This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite...
Persistent link: https://www.econbiz.de/10010574061
Central limit theorems are developed for instrumental variables estimates of linear and semiparametric partly linear regression models for spatial data. General forms of spatial dependence and heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss...
Persistent link: https://www.econbiz.de/10010574069
Nonparametric regression with spatial, or spatio-temporal, data is considered. The conditional mean of a dependent variable, given explanatory ones, is a nonparametric function, while the conditional covariance reflects spatial correlation. Conditional heteroscedasticity is also allowed, as well...
Persistent link: https://www.econbiz.de/10010574099
This paper studies the problem of treatment choice between a status quo treatment with a known outcome distribution and an innovation whose outcomes are observed only in a finite sample. I evaluate statistical decision rules, which are functions that map sample outcomes into the planner’s...
Persistent link: https://www.econbiz.de/10010597562