Showing 1 - 10 of 220
We extend the asymmetric, stochastic, volatility model by modeling the return-volatility distribution nonparametrically. The novelty is modeling this distribution with an infinite mixture of Normals, where the mixture unknowns have a Dirichlet process prior. Cumulative Bayes factors show our...
Persistent link: https://www.econbiz.de/10010730133
In this paper we consider Bayesian estimation of restricted conditional moment models with the linear regression as a particular example. A common practice in the Bayesian literature for linear regression and other semi-parametric models is to use flexible families of distributions for the...
Persistent link: https://www.econbiz.de/10010730143
Multiple time series data may exhibit clustering over time and the clustering effect may change across different series. This paper is motivated by the Bayesian non-parametric modelling of the dependence between clustering effects in multiple time series analysis. We follow a Dirichlet process...
Persistent link: https://www.econbiz.de/10010795333
We propose a quasi-Bayesian nonparametric approach to estimating the structural relationship φ among endogenous variables when instruments are available. We show that the posterior distribution of φ is inconsistent in the frequentist sense. We interpret this fact as the ill-posedness of the...
Persistent link: https://www.econbiz.de/10011052327
This paper studies an alternative quasi likelihood approach under possible model misspecification. We derive a filtered likelihood from a given quasi likelihood (QL), called a limited information quasi likelihood (LI-QL), that contains relevant but limited information on the data generation...
Persistent link: https://www.econbiz.de/10011052341
In this paper, we introduce a new Poisson mixture model for count panel data where the underlying Poisson process intensity is determined endogenously by consumer latent utility maximization over a set of choice alternatives. This formulation accommodates the choice and count in a single random...
Persistent link: https://www.econbiz.de/10010577526
Regression analyses of cross-country economic growth data are complicated by two main forms of model uncertainty: the uncertainty in selecting explanatory variables and the uncertainty in specifying the functional form of the regression function. Most discussions in the literature address these...
Persistent link: https://www.econbiz.de/10010588329
This paper develops methods of Bayesian inference in a sample selection model. The main feature of this model is that the outcome variable is only partially observed. We first present a Gibbs sampling algorithm for a model in which the selection and outcome errors are normally distributed. The...
Persistent link: https://www.econbiz.de/10010574082
We examine the evidence on excess stock return predictability in a Bayesian setting in which the investor faces uncertainty about both the existence and strength of predictability. When we apply our methods to the dividend-price ratio, we find that even investors who are quite skeptical about...
Persistent link: https://www.econbiz.de/10011209279
GARCH volatility models with fixed parameters are too restrictive for long time series due to breaks in the volatility process. Flexible alternatives are Markov-switching GARCH and change-point GARCH models. They require estimation by MCMC methods due to the path dependence problem. An unsolved...
Persistent link: https://www.econbiz.de/10011052313