Rocha, Ana; Costa, M.; Fernandes, Edite - In: Journal of Global Optimization 60 (2014) 2, pp. 239-263
This paper presents a filter-based artificial fish swarm algorithm for solving nonconvex constrained global optimization problems. Convergence to an <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\varepsilon $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="italic">ε</mi> </math> </EquationSource> </InlineEquation>-global minimizer is guaranteed. At each iteration <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$k$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>k</mi> </math> </EquationSource> </InlineEquation>, the algorithm requires a <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$(\rho ^{(k)},\varepsilon...</equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>