Showing 1 - 10 of 19
The empirical likelihood method is especially useful for constructing confidence intervals or regions of parameters of interest. Yet, the technique cannot be directly applied to partially linear single-index models for longitudinal data due to the within-subject correlation. In this paper, a...
Persistent link: https://www.econbiz.de/10008550993
Functional data are infinite-dimensional statistical objects which pose significant challenges to both theorists and practitioners. Both parametric and nonparametric regressions have received attention in the functional data analysis literature. However, the former imposes stringent constraints...
Persistent link: https://www.econbiz.de/10010737766
In this paper, we consider the partially linear single-index models with longitudinal data. We propose the bias-corrected quadratic inference function (QIF) method to estimate the parameters in the model by accounting for the within-subject correlation. Asymptotic properties for the proposed...
Persistent link: https://www.econbiz.de/10011042030
In this paper, we investigate the empirical likelihood for constructing a confidence region of the parameter of interest in a multi-link semiparametric model when an infinite-dimensional nuisance parameter exists. The new model covers the commonly used varying coefficient, generalized linear,...
Persistent link: https://www.econbiz.de/10008550961
The purpose of this paper is two-fold. First, for the estimation or inference about the parameters of interest in semiparametric models, the commonly used plug-in estimation for infinite-dimensional nuisance parameter creates non-negligible bias, and the least favorable curve or under-smoothing...
Persistent link: https://www.econbiz.de/10010572300
The varying coefficient partially linear model is considered in this paper. When the plug-in estimators of coefficient functions are used, the resulting smoothing score function becomes biased due to the slow convergence rate of nonparametric estimations. To reduce the bias of the resulting...
Persistent link: https://www.econbiz.de/10008861643
In this paper, we focus on the variable selection for semiparametric varying coefficient partially linear models with longitudinal data. A new variable selection procedure is proposed based on the combination of the basis function approximations and quadratic inference functions. The proposed...
Persistent link: https://www.econbiz.de/10010939513
The purpose of this article is to use an empirical likelihood method to study the construction of confidence intervals and regions for the parameters of interest in linear regression models with missing response data. A class of empirical likelihood ratios for the parameters of interest are...
Persistent link: https://www.econbiz.de/10005006480
In this note, we revisit the single-index model with heteroscedastic error, and recommend an estimating equation method in terms of transferring restricted least squares to unrestricted least squares: the estimator of the index parameter is asymptotically more efficient than existing estimators...
Persistent link: https://www.econbiz.de/10008488057
This paper focuses on the variable selections for semiparametric varying coefficient partially linear models when the covariates in the parametric and nonparametric components are all measured with errors. A bias-corrected variable selection procedure is proposed by combining basis function...
Persistent link: https://www.econbiz.de/10008488073