Showing 1 - 5 of 5
We study a random design regression model generated by dependent observations, when the regression function itself (or its [nu]-th derivative) may have a change or discontinuity point. A method based on the local polynomial fits with one-sided kernels to estimate the location and the jump size...
Persistent link: https://www.econbiz.de/10005153058
Let be a set of observations from a stationary jointly associated process and [theta](x) be the conditional median, that is, . We consider the problem of estimating [theta](x) based on the L1-norm kernel and establish asymptotic normality of the resulting estimator [theta]n(x).
Persistent link: https://www.econbiz.de/10005021328
This paper considers the nonparametric M-estimator in a nonlinear cointegration type model. The local time density argument, which was developed by Phillips and Park (1998) [6] and Wang and Phillips (2009) [9], is applied to establish the asymptotic theory for the nonparametric...
Persistent link: https://www.econbiz.de/10008550981
Modern random matrix theory indicates that when the population size p is not negligible with respect to the sample size n, the sample covariance matrices demonstrate significant deviations from the population covariance matrices. In order to recover the characteristics of the population...
Persistent link: https://www.econbiz.de/10009194642
In this paper, we consider testing for additivity in a class of nonparametric stochastic regression models. Two test statistics are constructed and their asymptotic distributions are established. We also conduct a small sample study for one of the test statistics through a simulated example.
Persistent link: https://www.econbiz.de/10005160645