Showing 1 - 6 of 6
The likelihood ratio (LR) for testing if the covariance matrix of the observation matrix X is R has some invariance properties that can be exploited for covariance matrix estimation purposes. More precisely, it was shown in Abramovich et al. (2004, 2007, 2007) that, in the Gaussian case,...
Persistent link: https://www.econbiz.de/10010737754
In this paper, we describe and study a class of linear shrinkage estimators of the covariance matrix that is well-suited for high dimensional matrices, has a rather wide domain of applicability, and is rooted into the Gaussian conjugate framework of Chen (1979). We propose here a new look at...
Persistent link: https://www.econbiz.de/10010930743
Let (εj)j≥0 be a sequence of independent p-dimensional random vectors and τ≥1 a given integer. From a sample ε1,…,εT+τ of the sequence, the so-called lag-τ auto-covariance matrix is Cτ=T−1∑j=1Tετ+jεjt. When the dimension p is large compared to the sample size T, this paper...
Persistent link: https://www.econbiz.de/10011263460
We derive efficient recursive formulas giving the exact distribution of the largest eigenvalue for finite dimensional real Wishart matrices and for the Gaussian Orthogonal Ensemble (GOE). In comparing the exact distribution with the limiting distribution of large random matrices, we also found...
Persistent link: https://www.econbiz.de/10010786416
This article studies two regularized robust estimators of scatter matrices proposed (and proved to be well defined) in parallel in Chen et al. (2011) and Pascal et al. (2013), based on Tyler’s robust M-estimator (Tyler, 1987) and on Ledoit and Wolf’s shrinkage covariance matrix estimator...
Persistent link: https://www.econbiz.de/10011042062
This paper addresses the problem of reconstructing a low-rank signal matrix observed with additive Gaussian noise. We first establish that, under mild assumptions, one can restrict attention to orthogonally equivariant reconstruction methods, which act only on the singular values of the observed...
Persistent link: https://www.econbiz.de/10010665701