Showing 1 - 3 of 3
We consider the robust estimation of regression parameters in linear models with long memory and heavy-tailed errors. Asymptotic Bahadur-type representations of robust estimates are developed and their limiting distributions are obtained. It is shown that the limiting distributions are very...
Persistent link: https://www.econbiz.de/10008861599
Nonparametric quantile regression with multivariate covariates is a difficult estimation problem due to the "curse of dimensionality". To reduce the dimensionality while still retaining the flexibility of a nonparametric model, we propose modeling the conditional quantile by a single-index...
Persistent link: https://www.econbiz.de/10008488054
We present methods to handle error-in-variables models. Kernel-based likelihood score estimating equation methods are developed for estimating conditional density parameters. In particular, a semiparametric likelihood method is proposed for sufficiently using the information in the data. The...
Persistent link: https://www.econbiz.de/10005221212