Showing 1 - 10 of 81
A valid Edgeworth expansion is established for the limit distribution of density-weighted semiparametric averaged derivative estimates of single index models. The leading term that corrects the normal limit varies in magnitude, depending on the choice of bandwidth and kernel order. In general...
Persistent link: https://www.econbiz.de/10011071403
We establish valid theoretical and empirical Edgeworth expansions for density-weighted averaged derivative estimates of semiparametric index models.
Persistent link: https://www.econbiz.de/10010928726
We introduce a kernel-based estimator of the density function and regression function for data that have been grouped into family totals. We allow for a common intra-family component but require that observations from different families be in dependent. We establish consistency and asymptotic...
Persistent link: https://www.econbiz.de/10010928627
We propose a new estimator for nonparametric regression based on local likelihood estimation using an estimated error score function obtained from the residuals of a preliminary nonparametric regression. We show that our estimator is asymptotically equivalent to the infeasible local maximum...
Persistent link: https://www.econbiz.de/10010745013
The nonparametric censored regression model, with a fixed, known censoring point (normalized to zero), is y = max[0,m(x) + e], where both the regression function m(x) and the distribution of the error e are unknown. This paper provides estimators of m(x) and its derivatives. The convergence rate...
Persistent link: https://www.econbiz.de/10010745070
We develop new tests of the capital asset pricing model which are valid under the assumption that the distribution generating returns is elliptically symmetric; this assumption is necessary and sufficient for the validity of the CAPM. Our test is based on semiparametric efficient estimation...
Persistent link: https://www.econbiz.de/10010746304
Let r (x, z) be a function that, along with its derivatives, can be consistently estimated nonparametrically. This paper discusses identification and consistent estimation of the unknown functions H, M, G and F, where r (x, z) = H [M (x, z)] and M (x, z) = G(x) + F (z). An estimation algorithm...
Persistent link: https://www.econbiz.de/10011071234
Efficient semiparametric and parametric estimates are developed for a spatial autoregressive model, containing nonstochastic explanatory variables and innovations suspected to be non-normal. The main stress is on the case of distribution of unknown, nonparametric, form, where series...
Persistent link: https://www.econbiz.de/10010928599
Although economists have long been aware of Jensen's inequality, many econometric applications have neglected an important implication of it: the standard practice of interpreting the parameters of log-linearized models estimated by ordinary least squares as elasticities can be highly misleading...
Persistent link: https://www.econbiz.de/10010746706
Inequality measures are often used to summarise information about empirical income distributions. However , the resulting picture of the distribution and of the changes in the distribution can be severely distorted if the data are contaminated. The nature of this distortion will in general...
Persistent link: https://www.econbiz.de/10010928608