Showing 1 - 3 of 3
We consider the incidental parameters problem in this paper, i.e. the estimation for a small number of parameters of interest in the presence of a large number of nuisance parameters. By assuming that the observations are taken from a multiple strictly stationary process, the two estimation...
Persistent link: https://www.econbiz.de/10011126404
This paper proposes a class of locally stationary diffusion processes. The model has a time varying but locally linear drift and a volatility coefficient that is allowed to vary over time and space. We propose estimators of all the unknown quantities based on long span data. Our estimation...
Persistent link: https://www.econbiz.de/10011126569
We address the problem of parameter estimation for diffusion driven stochastic volatility models through Markov chain Monte Carlo (MCMC). To avoid degeneracy issues we introduce an innovative reparametrisation defined through transformations that operate on the time scale of the diffusion. A...
Persistent link: https://www.econbiz.de/10010746298