Showing 1 - 6 of 6
We develop a general methodology for tilting time series data. Attention is focused on a large class of regression problems, where errors are expressed through autoregressive processes. The class has a range of important applications and in the context of our work may be used to illustrate the...
Persistent link: https://www.econbiz.de/10011126303
Clogg and Eliason (1987) proposed a simple method for taking account of survey weights when fitting log-linear models to contingency tables. This article investigates the properties of this method. A rationale is provided for the method when the weights are constant within the cells of the...
Persistent link: https://www.econbiz.de/10010745738
bound in the homoskedastic Gaussian case. We show that the Jackknife method can be used to consistently estimate the …
Persistent link: https://www.econbiz.de/10010928736
This paper proposes empirical likelihood based inference methods for causal effects identified from regression discontinuity designs. We consider both the sharp and fuzzy regression discontinuity designs and treat the regression functions as nonparametric. The proposed inference procedures do...
Persistent link: https://www.econbiz.de/10011126270
In order to develop statistical tests for the Lyapunov exponents of deterministic dynamical systems, we develop bootstrap tests based on empirical likelihood for percentiles and expectiles of strictly stationary processes. The percentiles and expectiles are estimated in terms of asymmetric least...
Persistent link: https://www.econbiz.de/10011126619
We discuss moving-maximum models, based on weighted maxima of independent random variables, for extreme values from a time series. The models encompass a range of stochastic processes that are of interest in the context of extreme-value data. We show that a stationary stochastic process whose...
Persistent link: https://www.econbiz.de/10011126665