Showing 1 - 10 of 60
We propose new procedures for estimating the univariate quantities of interest in both additive and multiplicative nonparametric marker dependent hazard models. We work with a full counting process framework that allows for left truncation and right censoring. Our procedures are based on kernels...
Persistent link: https://www.econbiz.de/10010745292
We introduce a new method for the estimation of discount functions, yield curves and forward curves from government issued coupon bonds. Our approach is nonparametric and does not assume a particular functional form for the discount function although we do show how to impose various restrictions...
Persistent link: https://www.econbiz.de/10010746603
A semiparametric hazard model with parametrized time but general covariate dependency is formulated and analyzed inside the framework of counting process theory. A profile likelihood principle is introduced for estimation of the parameters: the resulting estimator is n1/2-consistent,...
Persistent link: https://www.econbiz.de/10010928597
We investigate a new separable nonparametric model for time series, which includes many autoregressive conditional heteroskedastic (ARCH) models and autoregressive (AR) models already discussed in the literature. We also propose a new estimation procedure called LIVE, or local instrumental...
Persistent link: https://www.econbiz.de/10010928721
Local linear fitting is a popular nonparametric method in nonlinear statistical and econometric modelling. Lu and Linton (2007) established the point wise asymptotic distribution (central limit theorem) for the local linear estimator of nonparametric regression function under the condition of...
Persistent link: https://www.econbiz.de/10011126010
A new way of constructing efficient semiparametric instrumental variable estimators is proposed. The method involves the combination of a large number of possibly inefficient estimators rather than combining the instruments into an optimal instrument function. The consistency and asymptotic...
Persistent link: https://www.econbiz.de/10011126216
This paper derives the asymptotic distribution of nonparametric neural network estimator of the Lyapunov exponent in a noisy system proposed by Nychka et al (1992) and others. Positivity of the Lyapunov exponent is an operational definition of chaos. We introduce a statistical framework for...
Persistent link: https://www.econbiz.de/10011126294
We investigate a class of semiparametric ARCH(∞) models that includes as a special case the partially nonparametric (PNP) model introduced by Engle and Ng (1993) and which allows for both flexible dynamics and flexible function form with regard to the 'news impact' function. We propose an...
Persistent link: https://www.econbiz.de/10011126295
In semiparametric models it is a common approach to under-smooth the nonparametric functions in order that estimators of the finite dimensional parameters can achieve root-n consistency. The requirement of under-smoothing may result as we show from inefficient estimation methods or technical...
Persistent link: https://www.econbiz.de/10011126315
This paper proposes a class of locally stationary diffusion processes. The model has a time varying but locally linear drift and a volatility coefficient that is allowed to vary over time and space. We propose estimators of all the unknown quantities based on long span data. Our estimation...
Persistent link: https://www.econbiz.de/10011126569