Showing 1 - 10 of 1,828
The main purpose of the present study was to investigate the capabilities of two generations of models such as those based on dynamic neural network (e.g., Nonlinear Neural network Auto Regressive or NNAR model) and a regressive (Auto Regressive Fractionally Integrated Moving Average model which...
Persistent link: https://www.econbiz.de/10011260249
Recently, with the development of financial markets and due to the importance of these markets and their close relationship with other macroeconomic variables, using advanced mathematical models with complicated structures for forecasting these markets has become very popular. Besides, neural...
Persistent link: https://www.econbiz.de/10011112434
The paper investigates whether transforming a time series leads to an improvement in forecasting accuracy. The class of transformations that is considered is the Box-Cox power transformation, which applies to series measured on a ratio scale. We propose a nonparametric approach for estimating...
Persistent link: https://www.econbiz.de/10009207092
We study the behavior and interaction of systematic and idiosyncratic components of risk in a cross-section of U.K. stocks. We find no clear evidence of a trend in any component of total risk, but we document different “regimes” in the behavior of each component of total risk, in their...
Persistent link: https://www.econbiz.de/10011261127
The design of models for time series forecasting has found a solid foundation on statistics and mathematics. On this basis, in recent years, using intelligence-based techniques for forecasting has proved to be extremely successful and also is an appropriate choice as approximators to model and...
Persistent link: https://www.econbiz.de/10011109292
The design of models for time series forecasting has found a solid foundation on statistics and mathematics. On this basis, in recent years, using intelligence-based techniques for forecasting has proved to be extremely successful and also is an appropriate choice as approximators to model and...
Persistent link: https://www.econbiz.de/10011111726
This paper decomposes volatility proxies according to upward and downward price movements in high-frequency financial data, and uses this decomposition for forecasting volatility. The paper introduces a simple Garch-type discrete time model that incorporates such high-frequency based statistics...
Persistent link: https://www.econbiz.de/10005619651
We explore the relative weekly stock market volatility forecasting performance of the linear univariate MIDAS regression model based on squared daily returns vis-a-vis the benchmark model of GARCH(1,1) for a set of four developed and ten emerging market economies. We first estimate the two...
Persistent link: https://www.econbiz.de/10005789569
The volatility clustering often seen in financial data has increased the interest of researchers in applying good models to measure and forecast stock returns. This paper aims to model the volatility for daily and weekly returns of the Portuguese Stock Index PSI-20. By using simple GARCH,...
Persistent link: https://www.econbiz.de/10005790340
This study sheds new light on the question of whether or not sentiment surveys, and the expectations derived from them, are relevant to forecasting economic growth and stock returns, and whether they contain information that is orthogonal to macroeconomic and financial data. I examine 16...
Persistent link: https://www.econbiz.de/10009647399