Showing 1 - 10 of 10
Persistent link: https://www.econbiz.de/10005375980
Simple transformations are given for reducing/stabilizing bias, skewness and kurtosis, including the first such transformations for kurtosis. The transformations are based on cumulant expansions and the effect of transformations on their main coefficients. The proposed transformations are...
Persistent link: https://www.econbiz.de/10010896472
We consider the mixed AR(1) time series model <Equation ID="Equa"> <EquationSource Format="TEX">$$X_t=\left\{\begin{array}{ll}\alpha X_{t-1}+ \xi_t \quad {\rm w.p.} \qquad \frac{\alpha^p}{\alpha^p-\beta ^p},\\ \beta X_{t-1} + \xi_{t} \quad {\rm w.p.} \quad -\frac{\beta^p}{\alpha^p-\beta ^p} \end{array}\right.$$</EquationSource> </Equation>for −1  β <Superscript> p </Superscript> ≤ 0 ≤ α <Superscript>...</superscript></superscript></equationsource></equation>
Persistent link: https://www.econbiz.de/10010995019
We consider the (possibly nonlinear) regression model in <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$\mathbb{R }^q$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msup> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> <mi>q</mi> </msup> </math> </EquationSource> </InlineEquation> with shift parameter <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$$\alpha $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="italic">α</mi> </math> </EquationSource> </InlineEquation> in <InlineEquation ID="IEq6"> <EquationSource Format="TEX">$$\mathbb{R }^q$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msup> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> <mi>q</mi> </msup> </math> </EquationSource> </InlineEquation> and other parameters <InlineEquation ID="IEq7"> <EquationSource Format="TEX">$$\beta $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="italic">β</mi> </math> </EquationSource> </InlineEquation> in <InlineEquation ID="IEq8"> <EquationSource Format="TEX">$$\mathbb{R }^p$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msup> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> <mi>p</mi> </msup> </math> </EquationSource> </InlineEquation>. Residuals are assumed to be from an unknown...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010995139
Two methods are given for adapting a kernel density estimate to obtain an estimate of a density function with bias O(h <Superscript> p </Superscript>) for any given p, where h=h(n) is the bandwidth and n is the sample size. The first method is standard. The second method is new and involves use of Bell polynomials. The...</superscript>
Persistent link: https://www.econbiz.de/10010995204
Persistent link: https://www.econbiz.de/10005598772
Persistent link: https://www.econbiz.de/10010539337
Persistent link: https://www.econbiz.de/10009324788
Persistent link: https://www.econbiz.de/10008775688
Persistent link: https://www.econbiz.de/10008673991