Showing 1 - 10 of 25
In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a hybrid...
Persistent link: https://www.econbiz.de/10005149095
This paper presents a comprehensive empirical evaluation of option-implied and returns-based forecasts of volatility, in which recent developments related to the impact on measured volatility of market microstructure noise are taken into account. The paper also assesses the robustness of the...
Persistent link: https://www.econbiz.de/10005125282
This paper presents a comprehensive empirical evaluation of option-implied and returns-based forecasts of volatility, in which new developments related to the impact on measured volatility of market microstructure noise and random jumps are explicitly taken into account. The option-based...
Persistent link: https://www.econbiz.de/10005125283
A Bayesian approach to option pricing is presented, in which posterior inference about the underlying returns process is conducted implicitly via observed option prices. A range of models allowing for conditional leptokurtosis, skewness and time-varying volatility in returns are considered, with...
Persistent link: https://www.econbiz.de/10005427614
Dynamic jumps in the price and volatility of an asset are modelled using a joint Hawkes process in conjunction with a bivariate jump diffusion. A state space representation is used to link observed returns, plus nonparametric measures of integrated volatility and price jumps, to the specified...
Persistent link: https://www.econbiz.de/10011141014
This paper investigates the dynamic behaviour of jumps in financial prices and volatility. The proposed model is based on a standard jump diffusion process for price and volatility augmented by a bivariate Hawkes process for the two jump components. The latter process speci.es a joint dynamic...
Persistent link: https://www.econbiz.de/10010860403
A Bayesian Markov Chain Monte Carlo methodology is developed for estimating the stochastic conditional duration model. The conditional mean of durations between trades is modelled as a latent stochastic process, with the conditional distribution of durations having positive support. The sampling...
Persistent link: https://www.econbiz.de/10005149083
The object of this paper is to produce non-parametric maximum likelihood estimates of forecast distributions in a general non-Gaussian, non-linear state space setting. The transition densities that define the evolution of the dynamic state process are represented in parametric form, but the...
Persistent link: https://www.econbiz.de/10009291983
The object of this paper is to produce distributional forecasts of physical volatility and its associated risk premia using a non-Gaussian, non-linear state space approach. Option and spot market information on the unobserved variance process is captured by using dual 'model-free' variance...
Persistent link: https://www.econbiz.de/10008763558
The Latrobe Valley generates 85% of Victoria's electricity. The progressive privatisation of the electricity industry between 1989 and 1997, had a lasting effect on income distribution in the region. This paper investigates the change in income level, inequality and poverty for this region...
Persistent link: https://www.econbiz.de/10009650289