Showing 1 - 10 of 129
We evaluate the performance of various methods for forecasting tourism demand. The data used include 380 monthly series, 427 quarterly series and 530 yearly series, all supplied to us by tourism bodies or by academics from previous tourism forecasting studies. The forecasting methods implemented...
Persistent link: https://www.econbiz.de/10005427605
We review the past 25 years of time series research that has been published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985; International Journal of Forecasting 1985-2005). During this period, over one third of all papers published in these...
Persistent link: https://www.econbiz.de/10005427625
The state space approach to modelling univariate time series is now widely used both in theory and in applications. However, the very richness of the framework means that quite different model formulations are possible, even when they purport to describe the same phenomena. In this paper, we...
Persistent link: https://www.econbiz.de/10005427626
We discuss and compare measures of accuracy of univariate time series forecasts. The methods used in the M-competition and the M3-competition, and many of the measures recommended by previous authors on this topic, are found to be inadequate, and many of them are degenerate in commonly occurring...
Persistent link: https://www.econbiz.de/10005427631
In this paper, we propose a new Empirical Information Criterion (EIC) for model selection which penalizes the likelihood of the data by a function of the number of parameters in the model. It is designed to be used where there are a large number of time series to be forecast. However, a...
Persistent link: https://www.econbiz.de/10005427642
One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes to time series forecasting, because of the inherent serial correlation and potential non-stationarity of the data, its application is not...
Persistent link: https://www.econbiz.de/10011268570
Multi-step forecasts can be produced recursively by iterating a one-step model, or directly using a specific model for each horizon. Choosing between these two strategies is not an easy task since it involves a trade-off between bias and estimation variance over the forecast horizon. Using a...
Persistent link: https://www.econbiz.de/10010958944
A new innovations state space modeling framework, incorporating Box-Cox transformations, Fourier series with time varying coefficients and ARMA error correction, is introduced for forecasting complex seasonal time series that cannot be handled using existing forecasting models. Such complex time...
Persistent link: https://www.econbiz.de/10008556604
Optimal probabilistic forecasts of integer-valued random variables are derived. The optimality is achieved by estimating the forecast distribution nonparametrically over a given broad model class and proving asymptotic efficiency in that setting. The ideas are demonstrated within the context of...
Persistent link: https://www.econbiz.de/10005003387
This paper investigates the empirical properties of autoregressive approximations to two classes of process for which the usual regularity conditions do not apply; namely the non-invertible and fractionally integrated processes considered in Poskitt (2006). In that paper the theoretical...
Persistent link: https://www.econbiz.de/10005087579