Showing 1 - 10 of 103
A new approach to inference in state space models is proposed, based on approximate Bayesian computation (ABC). ABC avoids evaluation of the likelihood function by matching observed summary statistics with statistics computed from data simulated from the true process; exact inference being...
Persistent link: https://www.econbiz.de/10010958938
Dynamic jumps in the price and volatility of an asset are modelled using a joint Hawkes process in conjunction with a bivariate jump diffusion. A state space representation is used to link observed returns, plus nonparametric measures of integrated volatility and price jumps, to the specified...
Persistent link: https://www.econbiz.de/10011141014
In this paper, we introduce a new class of bivariate threshold VAR cointegration models. In the models, outside a compact region, the processes are cointegrated, while in the compact region, we allow different kinds of possibilities. We show that the bivariate processes from a 1/2-null recurrent...
Persistent link: https://www.econbiz.de/10011193729
The object of this paper is to produce distributional forecasts of physical volatility and its associated risk premia using a non-Gaussian, non-linear state space approach. Option and spot market information on the unobserved variance process is captured by using dual 'model-free' variance...
Persistent link: https://www.econbiz.de/10008763558
We evaluate the performance of various methods for forecasting tourism demand. The data used include 380 monthly series, 427 quarterly series and 530 yearly series, all supplied to us by tourism bodies or by academics from previous tourism forecasting studies. The forecasting methods implemented...
Persistent link: https://www.econbiz.de/10005427605
We review the past 25 years of time series research that has been published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985; International Journal of Forecasting 1985-2005). During this period, over one third of all papers published in these...
Persistent link: https://www.econbiz.de/10005427625
The state space approach to modelling univariate time series is now widely used both in theory and in applications. However, the very richness of the framework means that quite different model formulations are possible, even when they purport to describe the same phenomena. In this paper, we...
Persistent link: https://www.econbiz.de/10005427626
A new approach is proposed for forecasting a time series with multiple seasonal patterns. A state space model is developed for the series using the single source of error approach which enables us to develop explicit models for both additive and multiplicative seasonality. Parameter estimates...
Persistent link: https://www.econbiz.de/10005427630
We discuss and compare measures of accuracy of univariate time series forecasts. The methods used in the M-competition and the M3-competition, and many of the measures recommended by previous authors on this topic, are found to be inadequate, and many of them are degenerate in commonly occurring...
Persistent link: https://www.econbiz.de/10005427631
In this paper we present a test statistic, which will be used to test for significant differences between generating processes of two time series that may be logically connected. The test statistic is based on the differences between estimated parameters of the autoregressive models which are...
Persistent link: https://www.econbiz.de/10005427632