Showing 1 - 10 of 44
In this paper, we propose a new Empirical Information Criterion (EIC) for model selection which penalizes the likelihood of the data by a function of the number of parameters in the model. It is designed to be used where there are a large number of time series to be forecast. However, a...
Persistent link: https://www.econbiz.de/10005427642
When the unobservable Markov chain in a hidden Markov model is stationary the marginal distribution of the observations is a finite mixture with the number of terms equal to the number of the states of the Markov chain. This suggests estimating the number of states of the unobservable Markov...
Persistent link: https://www.econbiz.de/10005149027
We evaluate the performance of various methods for forecasting tourism demand. The data used include 380 monthly series, 427 quarterly series and 530 yearly series, all supplied to us by tourism bodies or by academics from previous tourism forecasting studies. The forecasting methods implemented...
Persistent link: https://www.econbiz.de/10005427605
Influence diagnostics have become an important tool for statistical analysis since the seminal work by Cook (1986). In this paper we present a curvature-based diagnostic to access local influence of minor perturbations on the modified likelihood displacement in a regression model. Using the...
Persistent link: https://www.econbiz.de/10005427627
We discuss and compare measures of accuracy of univariate time series forecasts. The methods used in the M-competition and the M3-competition, and many of the measures recommended by previous authors on this topic, are found to be inadequate, and many of them are degenerate in commonly occurring...
Persistent link: https://www.econbiz.de/10005427631
Statistical models can play a crucial role in decision making. Traditional model validation tests typically make restrictive parametric assumptions about the model under the null and the alternative hypotheses. The majority of these tests examine one type of change at a time. This paper presents...
Persistent link: https://www.econbiz.de/10011141012
One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes to time series forecasting, because of the inherent serial correlation and potential non-stationarity of the data, its application is not...
Persistent link: https://www.econbiz.de/10011268570
In this paper we study a statistical method of implementing quasi-Bayes estimators for nonlinear and nonseparable GMM models, that is motivated by the ideas proposed in Chernozhukov and Hong (2003) and Creel and Kristensen (2011) and that combines simulation with nonparametric regression in the...
Persistent link: https://www.econbiz.de/10011093867
This research proposes that, in cases where threshold covariates are either unavailable or difficult to observe, practitioners should treat these characteristics as latent, and use simulated maximum likelihood techniques to control for them. Two econometric frameworks for doing so in a more...
Persistent link: https://www.econbiz.de/10010860407
In this paper we quantify the impact of model mis-specification on the properties of parameter estimators applied to fractionally integrated processes. We demonstrate the asymptotic equivalence of four alternative parametric methods: frequency domain maximum likelihood, Whittle estimation, time...
Persistent link: https://www.econbiz.de/10010958942