Showing 1 - 10 of 164
A partially linear model is often estimated in a two-stage procedure, which involves estimating the nonlinear component conditional on initially estimated linear coefficients. We propose a sampling procedure that aims to simultaneously estimate the linear coefficients and bandwidths involved in...
Persistent link: https://www.econbiz.de/10011105011
Bandwidth plays an important role in determining the performance of nonparametric estimators, such as the local constant estimator. In this paper, we propose a Bayesian approach to bandwidth estimation for local constant estimators of time-varying coefficients in time series models. We establish...
Persistent link: https://www.econbiz.de/10011188646
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This...
Persistent link: https://www.econbiz.de/10009366291
We provide Markov chain Monte Carlo (MCMC) algorithms for computing the bandwidth matrix for multivariate kernel density estimation. Our approach is based on treating the elements of the bandwidth matrix as parameters to be estimated, which we do by optimizing the likelihood cross-validation...
Persistent link: https://www.econbiz.de/10005149069
A new regression based approach is proposed for modeling marketing databases. The approach is Bayesian and provides a number of significant improvements over current methods. Independent variables can enter into the model in either a parametric or nonparametric manner, significant variables can...
Persistent link: https://www.econbiz.de/10005149108
Multivariate kernel regression is an important tool for investigating the relationship between a response and a set of explanatory variables. It is generally accepted that the performance of a kernel regression estimator largely depends on the choice of bandwidth rather than the kernel function....
Persistent link: https://www.econbiz.de/10005149112
This paper investigates nonparametric estimation of density on [0,1]. The kernel estimator of density on [0,1] has been found to be sensitive to both bandwidth and kernel. This paper proposes a unified Bayesian framework for choosing both the bandwidth and kernel function. In a simulation study,...
Persistent link: https://www.econbiz.de/10009650286
We approximate the error density of a nonparametric regression model by a mixture of Gaussian densities with means being the individual error realizations and variance a constant parameter. We investigate the construction of a likelihood and posterior for bandwidth parameters under this...
Persistent link: https://www.econbiz.de/10009275517
Kernel density estimation is an important technique for understanding the distributional properties of data. Some investigations have found that the estimation of a global bandwidth can be heavily affected by observations in the tail. We propose to categorize data into low- and high-density...
Persistent link: https://www.econbiz.de/10008763786
A new approach to inference in state space models is proposed, based on approximate Bayesian computation (ABC). ABC avoids evaluation of the likelihood function by matching observed summary statistics with statistics computed from data simulated from the true process; exact inference being...
Persistent link: https://www.econbiz.de/10010958938