Showing 1 - 10 of 572
This article introduces a new class of instrumental variable (IV) estimators of causal treatment effects for linear and nonlinear models with covariates. The rationale for focusing on nonlinear models is to improve the approximation to the causal response function of interest. For example, if...
Persistent link: https://www.econbiz.de/10013239198
This paper exposits and relates two distinct approaches to bounding the average treatment effect. One approach, based on instrumental variables, is due to Manski (1990, 1994), who derives tight bounds on the average treatment effect under a mean independence form of the instrumental variables...
Persistent link: https://www.econbiz.de/10013239385
This paper introduces an instrumental variables estimator for the effect of a binary treatment on the quantiles of potential outcomes. The quantile treatment effects (QTE) estimator accommodates exogenous covariates and reduces to quantile regression as a special case when treatment status is...
Persistent link: https://www.econbiz.de/10013215680
Empirical researchers often combine multiple instrumental variables (IVs) for a single treatment using two-stage least squares (2SLS). When treatment effects are heterogeneous, a common justification for including multiple IVs is that the 2SLS estimand can be given a causal interpretation as a...
Persistent link: https://www.econbiz.de/10012889954
Structural econometric methods are often criticized for being sensitive to functional form assumptions. We study parametric estimators of the local average treatment effect (LATE) derived from a widely used class of latent threshold crossing models and show they yield LATE estimates...
Persistent link: https://www.econbiz.de/10012922224
The average effect of intervention or treatment is a parameter of interest in both epidemiology and econometrics. A key difference between applications in the two fields is that epidemiologic research is more likely to involve qualitative outcomes and nonlinear models. An example is the recent...
Persistent link: https://www.econbiz.de/10013231434
Matching estimators are widely used for the evaluation of programs or treatments. Often researchers use bootstrapping methods for inference. However, no formal justification for the use of the bootstrap has been provided. Here we show that the bootstrap is in general not valid, even in the...
Persistent link: https://www.econbiz.de/10012761283
Time series data are widely used to explore causal relationships, typically in a regression framework with lagged dependent variables. Regression-based causality tests rely on an array of functional form and distributional assumptions for valid causal inference. This paper develops a...
Persistent link: https://www.econbiz.de/10013221886
Researchers interested in estimating productivity can choose from an array of methodologies, each with its strengths and weaknesses. Methods differ by the assumptions they rely on and imply very different calculations. I compare five widely used techniques: (a) index numbers, (b) data...
Persistent link: https://www.econbiz.de/10013220963
This paper unites the treatment effect literature and the latent variable literature. The economic questions answered by the commonly used treatment effect parameters are considered. We demonstrate how the marginal treatment effect parameter can be used in a latent variable framework to generate...
Persistent link: https://www.econbiz.de/10013240992