Showing 1 - 10 of 2,957
We consider nonparametric identification and estimation in a nonseparable model where a continuous regressor of … endogenous assignment variable (like previous earnings). We provide new results on identification and estimation for these …
Persistent link: https://www.econbiz.de/10013097659
Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-treatment control variables. Here X may include (combinations of) continuous, discrete, and/or non-mutually exclusive “treatments”. Consider the linear regression of Y onto X in a subpopulation...
Persistent link: https://www.econbiz.de/10012908172
Time series data are widely used to explore causal relationships, typically in a regression framework with lagged dependent variables. Regression-based causality tests rely on an array of functional form and distributional assumptions for valid causal inference. This paper develops a...
Persistent link: https://www.econbiz.de/10013221886
This article introduces a new class of instrumental variable (IV) estimators of causal treatment effects for linear and nonlinear models with covariates. The rationale for focusing on nonlinear models is to improve the approximation to the causal response function of interest. For example, if...
Persistent link: https://www.econbiz.de/10013239198
The canonical difference-in-differences (DD) model contains two time periods, “pre” and “post”, and two groups, “treatment” and “control”. Most DD applications, however, exploit variation across groups of units that receive treatment at different times. This paper derives an...
Persistent link: https://www.econbiz.de/10012911458
Linear regressions with period and group fixed effects are widely used to estimate treatment effects. We show that they identify weighted sums of the average treatment effects (ATE) in each group and period, with weights that may be negative. Due to the negative weights, the linear regression...
Persistent link: https://www.econbiz.de/10012869229
estimation bandwidth shrinking even as the sample size increases. Second, estimates may be biased if the time-series properties …
Persistent link: https://www.econbiz.de/10012951355
We consider a linear panel event-study design in which unobserved confounds may be related both to the outcome and to the policy variable of interest. We provide sufficient conditions to identify the causal effect of the policy by exploiting covariates related to the policy only through the...
Persistent link: https://www.econbiz.de/10012920350
This paper introduces an instrumental variables estimator for the effect of a binary treatment on the quantiles of potential outcomes. The quantile treatment effects (QTE) estimator accommodates exogenous covariates and reduces to quantile regression as a special case when treatment status is...
Persistent link: https://www.econbiz.de/10013215680
The key assumption in regression discontinuity analysis is that the distribution of potential outcomes varies smoothly with the running variable around the cutoff. In many empirical contexts, however, this assumption is not credible; and the running variable is said to be manipulated in this...
Persistent link: https://www.econbiz.de/10012978088