Showing 1 - 6 of 6
In this paper, we study a generalised CIR process with externally-exciting and self-exciting jumps, and focus on the distributional properties and applications of this process and its aggregated process. The aim of the paper is to introduce a more general process that includes many models in the...
Persistent link: https://www.econbiz.de/10012128012
We study the recursive moments of aggregate discounted claims, where the dependence between the inter-claim time and the subsequent claim size is considered. Using the general expression for the m-th order moment proposed by Léveillé and Garrido (Scand. Actuar. J. 2001, 2, 98-110), which takes...
Persistent link: https://www.econbiz.de/10010399755
We explored the effect of the jump-diffusion process on a social benefit scheme consisting of life insurance, unemployment/disability benefits, and retirement benefits. To do so, we used a four-state Markov chain with multiple decrements. Assuming independent state-wise intensities taking the...
Persistent link: https://www.econbiz.de/10011867488
We introduce a bivariate Markov chain counting process with contagion for modelling the clustering arrival of loss claims with delayed settlement for an insurance company. It is a general continuous-time model framework that also has the potential to be applicable to modelling the clustering...
Persistent link: https://www.econbiz.de/10010489070
In this paper, we study the Parisian time of a reflected Brownian motion with drift on a finite collection of rays. We derive the Laplace transform of the Parisian time using a recursive method, and provide an exact simulation algorithm to sample from the distribution of the Parisian time. The...
Persistent link: https://www.econbiz.de/10012391003
In this paper, we present a new family of bivariate mixed exponential regression models for taking into account the positive correlation between the cost of claims from motor third party liability bodily injury and property damage in a versatile manner. Furthermore, we demonstrate how maximum...
Persistent link: https://www.econbiz.de/10013357344