Showing 1 - 10 of 18
This paper describes an estimator of the additive components of a nonparametric additive model with a known link function. When the additive components are twice continuously differentiable, the estimator is asymptotically normally distributed with a rate of convergence in probability of n -2/5...
Persistent link: https://www.econbiz.de/10010956560
Motivated by a nonparametric GARCH model we consider nonparametric additive regression and autoregression models in the special case that the additive components are linked parametrically. We show that the parameter can be estimated with parametric rate and give the normal limit. Our procedure...
Persistent link: https://www.econbiz.de/10010983568
We consider an additive model with second order interaction terms. It is shown how the components of this model can be estimated using marginal integration, and the asymptotic distribution of the estimators is derived. Moreover, two test statistics for testing the presence of interactions are...
Persistent link: https://www.econbiz.de/10010983831
Additive regression models have a long history in nonparametric regression. It is well known that these models can be estimated at the one dimensional rate. Until recently, however, these models have been estimated by a backfitting procedure. Although the procedure converges quickly, its...
Persistent link: https://www.econbiz.de/10010956556
The aim of this paper is to provide an alternative way of specification and estimation of a labor supply model. The proposed estimation procedure can be included in the so called predicted wage methods and its main interest is twofold. First, under standard assumptions in studies of labor...
Persistent link: https://www.econbiz.de/10010983501
This paper is concerned with the estimation and inference of nonparametric and semiparametric additive models in the presence of discrete variables and dependent observations. Among the different estimation procedures, the method introduced by Linton and Nielsen, based in marginal integration,...
Persistent link: https://www.econbiz.de/10010983541
The Nadaraya-Watson estimator of regression is known to be highly sensitive to the presence of outliers in the sample. A possible way of robustication consists in using local L-estimates of regression. Whereas the local L-estimation is traditionally done using an empirical conditional...
Persistent link: https://www.econbiz.de/10010983558
Stuetzle and Mittal (1979) for ordinary nonparametric kernel regression and Kauermann and Tutz (1996) for nonparametric generalized linear model kernel regression constructed estimators with lower order bias than the usual estimators, without the need for devices such as second derivative...
Persistent link: https://www.econbiz.de/10010983807
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy tailed distributions. We show that the recently proposed MAVE and OPG methods by Xia et al. (2002) allow us to make them robust in a relatively straightforward way...
Persistent link: https://www.econbiz.de/10010983843
We use ideas from estimating function theory to derive new, simply computed consistent covariance matrix estimates in nonparametric regression and in a class of semiparametric problems. Unlike other estimates in the literature, ours do not require auxiliary or additional nonparametric regressions.
Persistent link: https://www.econbiz.de/10010956344