Showing 1 - 10 of 18
Bayes estimates are derived in multivariate linear models with unknown distribution. The prior distribution is defined using a Dirichlet prior for the unknown error distribution and a ormal-Wishart distribution for the parameters. The posterior distribution for the parameters is determined and...
Persistent link: https://www.econbiz.de/10010956545
A definition of selfinformative Bayes carriers or limits is given as a description of an approach to noninformative Bayes estimation in non- and semiparametric models. It takes the posterior w.r.t. a prior as a new prior and repeats this procedure again and again. A main objective of the paper...
Persistent link: https://www.econbiz.de/10010956523
The Nadaraya-Watson estimator of regression is known to be highly sensitive to the presence of outliers in the sample. A possible way of robustication consists in using local L-estimates of regression. Whereas the local L-estimation is traditionally done using an empirical conditional...
Persistent link: https://www.econbiz.de/10010983558
Motivated by a nonparametric GARCH model we consider nonparametric additive regression and autoregression models in the special case that the additive components are linked parametrically. We show that the parameter can be estimated with parametric rate and give the normal limit. Our procedure...
Persistent link: https://www.econbiz.de/10010983568
Stuetzle and Mittal (1979) for ordinary nonparametric kernel regression and Kauermann and Tutz (1996) for nonparametric generalized linear model kernel regression constructed estimators with lower order bias than the usual estimators, without the need for devices such as second derivative...
Persistent link: https://www.econbiz.de/10010983807
We consider an additive model with second order interaction terms. It is shown how the components of this model can be estimated using marginal integration, and the asymptotic distribution of the estimators is derived. Moreover, two test statistics for testing the presence of interactions are...
Persistent link: https://www.econbiz.de/10010983831
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy tailed distributions. We show that the recently proposed MAVE and OPG methods by Xia et al. (2002) allow us to make them robust in a relatively straightforward way...
Persistent link: https://www.econbiz.de/10010983843
We use ideas from estimating function theory to derive new, simply computed consistent covariance matrix estimates in nonparametric regression and in a class of semiparametric problems. Unlike other estimates in the literature, ours do not require auxiliary or additional nonparametric regressions.
Persistent link: https://www.econbiz.de/10010956344
This paper establishes the almost. sure consistency of least. squares regression series estimators, in the L2-norm and the sup-norm, under very large assumptions on the underlying model. Three examples are considered in order to illustrate the general results: trigonometric series, Legendre...
Persistent link: https://www.econbiz.de/10010956362
We introduce a new method for the estimation of discount functions, yield curves and forward curves from government issued coupon bonds. Our approach is non-parametric and does not assume particular functional form for the discount function although we do show how to impose various restrictions...
Persistent link: https://www.econbiz.de/10010956440