Showing 1 - 10 of 147
A flexible statistical approach for the analysis of time-varying dynamics of transaction data on financial markets is here applied to intra-day trading strategies. A local adaptive technique is used to successfully predict financial time series, i.e., the buyer and the seller-initiated trading...
Persistent link: https://www.econbiz.de/10010895342
We propose a local adaptive multiplicative error model (MEM) accommodating timevarying parameters. MEM parameters are adaptively estimated based on a sequential testing procedure. A data-driven optimal length of local windows is selected, yielding adaptive forecasts at each point in time....
Persistent link: https://www.econbiz.de/10010544325
In this paper, we give an overview of the state-of-the-art in the econometric literature on the modeling of so-called financial point processes. The latter are associated with the random arrival of specific financial trading events, such as transactions, quote updates, limit orders or price...
Persistent link: https://www.econbiz.de/10005678003
The Reversible Jump Markov Chain Monte Carlo (RJMCMC) method can enhance Bayesian DSGE estimation by sampling from a posterior distribution spanning potentially nonnested models with parameter spaces of different dimensionality. We use the method to jointly sample from an ARMA process of unknown...
Persistent link: https://www.econbiz.de/10011207678
Multiplicative error models (MEM) became a standard tool for modeling conditional durations of intraday transactions, realized volatilities and trading volumes. The parametric estimation of the corresponding multivariate model, the so-called vector MEM (VMEM), requires a specification of the...
Persistent link: https://www.econbiz.de/10010587716
We study the impact of the arrival of macroeconomic news on the informational and noise-driven components in high-frequency quote processes and their conditional variances. Bid and ask returns are decomposed into a common ("efficient return") factor and two market-side-specific components...
Persistent link: https://www.econbiz.de/10008496956
We introduce a long memory autoregressive conditional Poisson (LMACP) model to model highly persistent time series of counts. The model is applied to forecast quoted bid-ask spreads, a key parameter in stock trading operations. It is shown that the LMACP nicely captures salient features of...
Persistent link: https://www.econbiz.de/10009205034
In this paper, we provide new empirical evidence on order submission activity and price impacts of limit orders at NASDAQ. Employing NASDAQ TotalView-ITCH data, we find that market participants dominantly submit limit orders with sizes equal to a round lot. Most limit orders are canceled almost...
Persistent link: https://www.econbiz.de/10009275679
Despite their importance in modern electronic trading, virtually no systematic empirical evidence on the market impact of incoming orders is existing. We quantify the short-run and long-run price effect of posting a limit order by proposing a high-frequency cointegrated VAR model for ask and bid...
Persistent link: https://www.econbiz.de/10008577794
We examine intra-day market reactions to news in stock-specific sentiment disclosures. Using pre-processed data from an automated news analytics tool based on linguistic pattern recognition we extract information on the relevance as well as the direction of company-specific news....
Persistent link: https://www.econbiz.de/10008458281