Showing 1 - 10 of 23
Graphical data representation is an important tool for model selection in bankruptcy analysis since the problem is highly non-linear and its numerical representation is much less transparent. In classical rating models a convenient representation of ratings in a closed form is possible reducing...
Persistent link: https://www.econbiz.de/10005489953
Die Prognose der Insolvenzgefährdung von Unternehmen anhand statistischer Methodik war und ist eine bedeutende Aufgabe empirischer Forschung. Eine Möglichkeit der Beurteilung der finanziellen bzw. wirtschaftlichen Verfassung von Unternehmen stellt die sog. externe Bilanzanalyse anhand...
Persistent link: https://www.econbiz.de/10005652785
Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to...
Persistent link: https://www.econbiz.de/10005677958
Persistent link: https://www.econbiz.de/10005207928
This paper proposes a rating methodology that is based on a non-linear classification method, the support vector machine, and a non-parametric technique for mapping rating scores into probabilities of default. We give an introduction to underlying statistical models and represent the results of...
Persistent link: https://www.econbiz.de/10005207929
In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank's objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitabil- ity of Smooth...
Persistent link: https://www.econbiz.de/10005207945
Predicting default probabilities is at the core of credit risk management and is becoming more and more important for banks in order to measure their client's degree of risk, and for rms to operate successfully. The SVM with evolutionary feature selection is applied to the CreditReform database....
Persistent link: https://www.econbiz.de/10010543377
In many economic applications it is desirable to make future predictions about the financial status of a company. The focus of predictions is mainly if a company will default or not. A support vector machine (SVM) is one learning method which uses historical data to establish a classification...
Persistent link: https://www.econbiz.de/10008568137
This study analyses credit default risk for firms in the Asian and Pacific region by applying two methodologies: a Support Vector Machine (SVM) and a logistic regression (Logit). Among different financial ratios suggested as predictors of default, leverage ratios and the company size display a...
Persistent link: https://www.econbiz.de/10009021755
In this study a framework for an online database-driven repository of information – QuantNet – is presented. QuantNet is aimed at easing the process of web publishing for those who are unfamiliar with technical details and markup languages. At the same time advanced users are provided with...
Persistent link: https://www.econbiz.de/10005677924