Showing 1 - 10 of 100
In this paper we propose the GHADA risk management model that is based on the generalized hyperbolic (GH) distribution and on a nonparametric adaptive methodology. Compared to the normal distribution, the GH distribution possesses semi-heavy tails and represents the financial risk factors more...
Persistent link: https://www.econbiz.de/10003035074
Persistent link: https://www.econbiz.de/10003036527
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy-tailed distributions. We show that the recently proposed methods by Xia et al. (2002) can be made robust in such a way that preserves all advantages of the original...
Persistent link: https://www.econbiz.de/10003036534
A primary goal in modelling the implied volatility surface (IVS) for pricing and hedging aims at reducing complexity. For this purpose one fits the IVS each day and applies a principal component analysis using a functional norm. This approach, however, neglects the degenerated string structure...
Persistent link: https://www.econbiz.de/10003036581
Persistent link: https://www.econbiz.de/10008663388
(High dimensional) time series which reveal nonstationary and possibly periodic behavior occur frequently in many fields of science. In this article, we separate the modeling of high dimensional time series to time propagation of low dimensional time series and high dimensional time invariant...
Persistent link: https://www.econbiz.de/10008663392
Generalized single-index models are natural extensions of linear models and circumvent the so-called curse of dimensionality. They are becoming increasingly popular in many scientific fields including biostatistics, medicine, economics and financial econometrics. Estimating and testing the model...
Persistent link: https://www.econbiz.de/10003893146
In this paper uniform confidence bands are constructed for nonparametric quantile estimates of regression functions. The method is based on the bootstrap, where resampling is done from a suitably estimated empirical density function (edf) for residuals. It is known that the approximation error...
Persistent link: https://www.econbiz.de/10003952788
Pricing kernels implicit in option prices play a key role in assessing the risk aversion over equity returns. We deal with nonparametric estimation of the pricing kernel (Empirical Pricing Kernel) given by the ratio of the risk-neutral density estimator and the subjective density estimator. The...
Persistent link: https://www.econbiz.de/10003952791
This paper studies the performance of nonparametric quantile regression as a tool to predict Value at Risk (VaR). The approach is flexible as it requires no assumptions on the form of return distributions. A monotonized double kernel local linear estimator is applied to estimate moderate (1%)...
Persistent link: https://www.econbiz.de/10003952845