Showing 1 - 10 of 212
Risk management technology applied to high dimensional portfolios needs simple and fast methods for calculation of Value-at-Risk (VaR). The multivariate normal framework provides a simple off-the-shelf methodology but lacks the heavy tailed distributional properties that are observed in data. A...
Persistent link: https://www.econbiz.de/10003324161
Stock picking is the field of financial analysis that is of particular interest for many professional investors and researchers. In this study stock picking is implemented via binary classification trees. Optimal tree size is believed to be the crucial factor in forecasting performance of the...
Persistent link: https://www.econbiz.de/10003727376
In this paper, we review the most common specifications of discrete-time stochastic volatility (SV) models and illustrate the major principles of corresponding Markov Chain Monte Carlo (MCMC) based statistical inference. We provide a hands-on ap proach which is easily implemented in empirical...
Persistent link: https://www.econbiz.de/10003770817
This paper provides theory as well as empirical results for pre-averaging estimators of the daily quadratic variation of asset prices. We derive jump robust inference for pre-averaging estimators, corresponding feasible central limit theorems and an explicit test on serial dependence in...
Persistent link: https://www.econbiz.de/10008663394
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003893144
This paper studies the performance of nonparametric quantile regression as a tool to predict Value at Risk (VaR). The approach is flexible as it requires no assumptions on the form of return distributions. A monotonized double kernel local linear estimator is applied to estimate moderate (1%)...
Persistent link: https://www.econbiz.de/10003952845
A Lévy process is observed at time points of distance delta until time T. We construct an estimator of the Lévy-Khinchine characteristics of the process and derive optimal rates of convergence simultaneously in T and delta. Thereby, we encompass the usual low- and high-frequency assumptions...
Persistent link: https://www.econbiz.de/10009125540
Given n equidistant realisations of a Lévy process (Lt; t = 0), a natural estimator for the distribution function N of the Lévy measure is constructed. Under a polynomial decay restriction on the characteristic function, a Donsker-type theorem is proved, that is, a functional central limit...
Persistent link: https://www.econbiz.de/10009407027
This article studies nonparametric estimation of a regression model for d ≥ 2 potentially non-stationary regressors. It provides the first nonparametric procedure for a wide and important range of practical problems, for which there has been no applicable nonparametric estimation technique...
Persistent link: https://www.econbiz.de/10009379521
This paper considers estimation and inference for varying-coefficient models with nonstationary regressors. We propose a nonparametric estimation method using penalized splines, which achieves the same optimal convergence rate as kernel-based methods, but enjoys computation advantages. Utilizing...
Persistent link: https://www.econbiz.de/10009767261