Showing 1 - 10 of 105
We present a closed form solution to the perpetual American double barrier call option problem in a model driven by Brownian motion and a compound Poisson process with exponential jumps. The method of proof is based on reducing the inital irregular optimal stopping problem to an...
Persistent link: https://www.econbiz.de/10003375783
The calibration of option pricing models leads to the minimization of an error functional. We show that its usual specification as a root mean squared error implies fluctuating exotics prices and possibly wrong prices. We propose a simple and natural method to overcome these problems, illustrate...
Persistent link: https://www.econbiz.de/10003324186
In this paper we consider the optimal stopping problem for general dynamic monetary utility functionals. Sufficient conditions for the Bellman principle and the existence of optimal stopping times are provided. Particular attention is payed to representations which allow for a numerical...
Persistent link: https://www.econbiz.de/10003905569
The Heston model stands out from the class of stochastic volatility (SV) models mainly for two reasons. Firstly, the process for the volatility is nonnegative and mean-reverting, which is what we observe in the markets. Secondly, there exists a fast and easily implemented semi-analytical...
Persistent link: https://www.econbiz.de/10008663372
We present an explicit solution to the formulated in [17] optimal stopping problem for a geometric compound Poisson process with exponential jumps. The method of proof is based on reducing the initial problem to an integro-differential free-boundary problem where the smooth fit may break down...
Persistent link: https://www.econbiz.de/10003376005
Option pricing models are calibrated to market data of plain vanillas by minimization of an error functional. From the economic viewpoint, there are several possibilities to measure the error between the market and the model. These different specifications of the error give rise to different...
Persistent link: https://www.econbiz.de/10003324181
We study the problem of finding the minimal initial capital needed in order to hedge without risk a barrier option when the vector of proportions of wealth invested in each risky asset is constraint to lie in a closed convex domain. In the context of a Brownian diffusion model, we provide a PDE...
Persistent link: https://www.econbiz.de/10003324353
In this paper, we study the statistical properties of the moneyness scaling transformation by Leung and Sircar (2015). This transformation adjusts the moneyness coordinate of the implied volatility smile in an attempt to remove the discrepancy between the IV smiles for levered and unlevered ETF...
Persistent link: https://www.econbiz.de/10011437891
Here we develop methods for efficient pricing multidimensional discrete time American and Bermudan options by using regression based algorithms together with a new approach towards constructing upper bounds for the price of the option. Applying the sample space with payoffs at the optimal...
Persistent link: https://www.econbiz.de/10003375769
Here we develop an approach for efficient pricing discrete-time American and Bermudan options which employs the fact that such options are equivalent to the European ones with a consumption, combined with analysis of the market model over a small number of steps ahead. This approach allows...
Persistent link: https://www.econbiz.de/10003324475