Showing 1 - 10 of 20
Persistent link: https://www.econbiz.de/10005391489
Persistent link: https://www.econbiz.de/10005391503
Dzhaparidze and Spreij (Stoch Process Appl, 54:165–174, <CitationRef CitationID="CR5">1994</CitationRef>) showed that the quadratic variation of a semimartingale can be approximated using a randomized periodogram. We show that the same approximation is valid for a special class of continuous stochastic processes. This class contains...</citationref>
Persistent link: https://www.econbiz.de/10010992888
We study a least square-type estimator for an unknown parameter in the drift coefficient of a stochastic differential equation with additive fractional noise of Hurst parameter <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$H1/2$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>H</mi> <mo></mo> <mn>1</mn> <mo stretchy="false">/</mo> <mn>2</mn> </mrow> </math> </EquationSource> </InlineEquation>. The estimator is based on discrete time observations of the stochastic differential...</equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010992891
Based on Malliavin calculus tools and approximation results, we show how to compute a maximum likelihood type estimator for a rather general differential equation driven by a fractional Brownian motion with Hurst parameter <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$H1/2$$</EquationSource> </InlineEquation>. Rates of convergence for the approximation task are provided,...</equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010992901
Persistent link: https://www.econbiz.de/10005616011
Persistent link: https://www.econbiz.de/10005616015
Persistent link: https://www.econbiz.de/10005616017
Persistent link: https://www.econbiz.de/10005616033
Persistent link: https://www.econbiz.de/10005616054