Showing 1 - 4 of 4
We describe a general framework for measuring risks, where the risk measure takes values in an abstract cone. It is shown that this approach naturally includes the classical risk measures and set-valued risk measures and yields a natural definition of vector-valued risk measures. Several main...
Persistent link: https://www.econbiz.de/10005249623
Since risky positions in multivariate portfolios can be offset by various choices of capital requirements that depend on the exchange rules and related transaction costs, it is natural to assume that the risk measures of random vectors are set-valued. Furthermore, it is reasonable to include the...
Persistent link: https://www.econbiz.de/10010610061
Given a data set in the multivariate Euclidean space, we study regions of central points built by averaging all their subsets with a fixed number of elements. The averaging of these sets is performed by appropriately scaling the Minkowski or elementwise summation of their convex hulls. The...
Persistent link: https://www.econbiz.de/10005249604
We present two statistical depth functions given in terms of the random variable defined as the minimum number of observations of a random vector that are needed to include a fixed given point in their convex hull. This random variable measures the degree of outlyingness of a point with respect...
Persistent link: https://www.econbiz.de/10005249648