Showing 1 - 5 of 5
We consider N independent stochastic processes (Xj(t),t∈[0,T]), j=1,…,N, defined by a one-dimensional stochastic differential equation with coefficients depending on a random variable ϕj and study the nonparametric estimation of the density of the random effect ϕj in two kinds of mixed...
Persistent link: https://www.econbiz.de/10011065043
In this paper, we study the problem of the nonparametric estimation of the marginal density f of a class of continuous time processes. To this aim, we use a projection estimator and deal with the integrated mean square risk. Under Castellana and Leadbetter's condition (Stoch. Proc. Appl. 21...
Persistent link: https://www.econbiz.de/10008874987
In this paper, we study nonparametric estimation of the Lévy density for pure jump Lévy processes. We consider n discrete time observations with step [Delta]. The asymptotic framework is: n tends to infinity, [Delta]=[Delta]n tends to zero while n[Delta]n tends to infinity. First, we use a...
Persistent link: https://www.econbiz.de/10008872686
In this paper, we study the problem of nonparametric estimation of the mean and variance functions b and [sigma]2 in a model: Xi+1=b(Xi)+[sigma](Xi)[var epsilon]i+1. For this purpose, we consider a collection of finite dimensional linear spaces. We estimate b using a mean squares estimator built...
Persistent link: https://www.econbiz.de/10008873612
Let (Vt) be a stationary and [beta]-mixing diffusion with unknown drift and diffusion coefficient. The integrated process is observed at discrete times with regular sampling interval . For both the drift function and the diffusion coefficient of the unobserved diffusion (Vt), we build...
Persistent link: https://www.econbiz.de/10008874130