Showing 1 - 10 of 21
We investigate the asymptotic behavior of the least squares estimator of the unknown parameters of random coefficient bifurcating autoregressive processes. Under suitable assumptions on inherited and environmental effects, we establish the almost sure convergence of our estimates. In addition,...
Persistent link: https://www.econbiz.de/10011194128
We discuss the construction and approximation of solutions to a nonlinear McKean–Vlasov equation driven by a singular self-excitatory interaction of the mean-field type. Such an equation is intended to describe an infinite population of neurons which interact with one another. Each time a...
Persistent link: https://www.econbiz.de/10011209785
We study the simple hypothesis testing problem for the drift coefficient for stochastic fractional heat equation driven by additive noise. We introduce the notion of asymptotically the most powerful test, and find explicit forms of such tests in two asymptotic regimes: large time asymptotics,...
Persistent link: https://www.econbiz.de/10011194149
In this paper, we establish a central limit theorem for a large class of general supercritical superprocesses with spatially dependent branching mechanisms satisfying a second moment condition. This central limit theorem generalizes and unifies all the central limit theorems obtained recently in...
Persistent link: https://www.econbiz.de/10011194132
We study the asymptotics of lattice power variations of two-parameter ambit fields driven by white noise. Our first result is a law of large numbers for power variations. Under a constraint on the memory of the ambit field, normalized power variations converge to certain integral functionals of...
Persistent link: https://www.econbiz.de/10010875068
Let (Zn) be a supercritical branching process in a random environment ξ, and W be the limit of the normalized population size Zn/E[Zn|ξ]. We show large and moderate deviation principles for the sequence logZn (with appropriate normalization). For the proof, we calculate the critical value for...
Persistent link: https://www.econbiz.de/10011064888
A straightforward application of an interacting particle system to estimate a rare event for switching diffusions fails to produce reasonable estimates within a reasonable amount of simulation time. To overcome this, a conditional “sampling per mode” algorithm has been proposed by Krystul in...
Persistent link: https://www.econbiz.de/10011064938
In some recent papers, some procedures based on some weighted empirical measures related to decreasing-step Euler schemes have been investigated to approximate the stationary regime of a diffusion (possibly with jumps) for a class of functionals of the process. This method is efficient but needs...
Persistent link: https://www.econbiz.de/10011064999
Suppose that {Xt,t≥0} is a non-stationary Markov process, taking values in a Polish metric space E. We prove the law of large numbers and central limit theorem for an additive functional of the form ∫0Tψ(Xs)ds, provided that the dual transition probability semigroup, defined on measures, is...
Persistent link: https://www.econbiz.de/10011065048
This paper establishes a central limit theorem and an invariance principle for a wide class of stationary random fields under natural and easily verifiable conditions. More precisely, we deal with random fields of the form Xk=g(εk−s,s∈Zd), k∈Zd, where (εi)i∈Zd are iid random variables...
Persistent link: https://www.econbiz.de/10011065076