Showing 1 - 5 of 5
We study stochastic forced oscillations of a mass-spring system with time-dependent, stochastic damping. The main purpose is to analyze the effect of the time-dependent damping. The oscillations are governed by the second-order stochastic differential equation , where x denotes the motion, Wt...
Persistent link: https://www.econbiz.de/10008875124
We consider a situation where relative prices of assets may change continuously and also have discrete jumps at random time points. The problem is the one of portfolio optimization. If the utility function used is the logarithm, we first argue that an optimal investment plan exists. Secondly, we...
Persistent link: https://www.econbiz.de/10008875210
We prove a stochastic maximum principle for controlled processes X(t)=X(u)(t) of the formdX(t)=b(t,X(t),u(t)) dt+[sigma](t,X(t),u(t)) dB(H)(t),where B(H)(t) is m-dimensional fractional Brownian motion with Hurst parameter . As an application we solve a problem about minimal variance hedging in...
Persistent link: https://www.econbiz.de/10008873784
This paper develops a stochastic integration theory with respect to volatility modulated Lévy-driven Volterra (V MLV) processes. It extends recent results in the literature to allow for stochastic volatility and pure jump processes in the integrator. The new integration operator is based on...
Persistent link: https://www.econbiz.de/10010719752
We study backward stochastic differential equations (BSDEs) for time-changed Lévy noises when the time-change is independent of the Lévy process. We prove existence and uniqueness of the solution and we obtain an explicit formula for linear BSDEs and a comparison principle. BSDEs naturally...
Persistent link: https://www.econbiz.de/10010744319