Showing 1 - 10 of 11
A small investor provides liquidity at the best bid and ask prices of a limit order market. For small spreads and frequent orders of other market participants, we explicitly determine the investor’s optimal policy and welfare. In doing so, we allow for general dynamics of the mid price, the...
Persistent link: https://www.econbiz.de/10011264619
We provide a mathematical framework to model continuous time trading of a small investor in limit order markets. We show how elementary strategies can be extended in a suitable way to general continuous time strategies containing orders with infinitely many different limit prices. The general...
Persistent link: https://www.econbiz.de/10011065020
We suggest three superpositions of COGARCH (sup-CO-GARCH) volatility processes driven by Lévy processes or Lévy bases. We investigate second-order properties, jump behaviour, and prove that they exhibit Pareto-like tails. Corresponding price processes are defined and studied. We find that the...
Persistent link: https://www.econbiz.de/10011194107
Motivated by empirical evidence of long range dependence in macroeconomic variables like interest rates we propose a fractional Brownian motion driven model to describe the dynamics of the short and the default rate in a bond market. Aiming at results analogous to those for affine models we...
Persistent link: https://www.econbiz.de/10011065084
Consider a random walk or Lévy process {St} and let [tau](u) = inf {t[greater-or-equal, slanted]0 : St u}, P(u)(·) = P(· [tau](u) < [infinity]). Assuming that the upwards jumps are heavy-tailed, say subexponential (e.g. Pareto, Weibull or lognormal), the asymptotic form of the P(u)-distribution of the process {St} up to time [tau](u) is described as u --> [infinity]. Essentially, the results confirm the folklore that level crossing occurs as result of one big jump. Particular sharp conclusions are obtained for...</[infinity]).>
Persistent link: https://www.econbiz.de/10008874973
We study the tail asymptotics of the r.v. X(T) where {X(t)} is a stochastic process with a linear drift and satisfying some regularity conditions like a central limit theorem and a large deviations principle, and T is an independent r.v. with a subexponential distribution. We find that the tail...
Persistent link: https://www.econbiz.de/10008875713
The purpose of this note is to correct an error in Baltrunas et al. (2004) [1], and to give a more detailed argument to a formula whose validity has been questioned over the years. These details close a gap in the proof of Theorem 4.1 as originally stated, the validity of which is...
Persistent link: https://www.econbiz.de/10009195272
For the solution Y of a multivariate random recurrence model Yn=AnYn-1+[zeta]n in we investigate the extremal behaviour of the process , , for with z*=1. This extends results for positive matrices An. Moreover, we obtain explicit representations of the compound Poisson limit of point processes...
Persistent link: https://www.econbiz.de/10008872670
Let [psi]i(u) be the probability of ruin for a risk process which has initial reserve u and evolves in a finite Markovian environment E with initial state i. Then the arrival intensity is [beta]j and the claim size distribution is Bj when the environment is in state j[set membership, variant]E....
Persistent link: https://www.econbiz.de/10008873824
With the df F of the rv X we associate the natural exponential family of df's F[lambda] wheredF[lambda](x)=e[lambda]x dF(x)/Ee[lambda]Xfor . Assume [lambda][infinity]=sup [Lambda][less-than-or-equals, slant][infinity] does not lie in [Lambda]. Let [lambda][short up arrow][lambda][infinity], then...
Persistent link: https://www.econbiz.de/10008873874