Showing 1 - 10 of 15
We study the tail asymptotics of the r.v. X(T) where {X(t)} is a stochastic process with a linear drift and satisfying some regularity conditions like a central limit theorem and a large deviations principle, and T is an independent r.v. with a subexponential distribution. We find that the tail...
Persistent link: https://www.econbiz.de/10008875713
Let [psi]i(u) be the probability of ruin for a risk process which has initial reserve u and evolves in a finite Markovian environment E with initial state i. Then the arrival intensity is [beta]j and the claim size distribution is Bj when the environment is in state j[set membership, variant]E....
Persistent link: https://www.econbiz.de/10008873824
Consider the American put and Russian option (Ann. Appl. Probab. 3 (1993) 603; Theory Probab. Appl. 39 (1994) 103; Ann. Appl. Probab. 3 (1993) 641) with the stock price modeled as an exponential Lévy process. We find an explicit expression for the price in the dense class of Lévy processes with...
Persistent link: https://www.econbiz.de/10008874892
We study the structure of point processes N with the property that the vary in a finite-dimensional space where [theta]t is the shift and the [sigma]-field generated by the counting process up to time t. This class of point processes is strictly larger than Neuts' class of Markovian arrival...
Persistent link: https://www.econbiz.de/10008872734
For risk processes with a general stationary input, a representation formula of ladder height distributions is proved which includes some additional information on process behaviour at the ladder epoch. The proof is short and probabilistic, and utilizes time reversal, occupation measures and...
Persistent link: https://www.econbiz.de/10008873703
Kella and Whitt (J. Appl. Probab. 29 (1992) 396) introduced a martingale {Mt} for processes of the form Zt=Xt+Yt where {Xt} is a Lévy process and Yt satisfies certain regularity conditions. In particular, this provides a martingale for the case where Yt=Lt where Lt is the local time at zero of...
Persistent link: https://www.econbiz.de/10008873731
The waiting time distribution is studied for the Markov-modulated M/G/1 queue with both the arrival rate [beta]i and the distribution Bi of the service time of the arriving customer depending on the state i of the environmental process. The analysis is based on ladder heights and occupation...
Persistent link: https://www.econbiz.de/10008874123
Let [tau](x)=inf{t0: Q(t)[greater-or-equal, slanted]x} be the time of first overflow of a queueing process {Q(t)} over level x (the buffer size) and . Assuming that {Q(t)} is the reflected version of a Lévy process {X(t)} or a Markov additive process, we study a variety of algorithms for...
Persistent link: https://www.econbiz.de/10008874378
We suggest three superpositions of COGARCH (sup-CO-GARCH) volatility processes driven by Lévy processes or Lévy bases. We investigate second-order properties, jump behaviour, and prove that they exhibit Pareto-like tails. Corresponding price processes are defined and studied. We find that the...
Persistent link: https://www.econbiz.de/10011194107
Motivated by empirical evidence of long range dependence in macroeconomic variables like interest rates we propose a fractional Brownian motion driven model to describe the dynamics of the short and the default rate in a bond market. Aiming at results analogous to those for affine models we...
Persistent link: https://www.econbiz.de/10011065084