Showing 1 - 10 of 41
This paper reviews the exciting and rapidly expanding literature on realized volatility. After presenting a general univariate framework for estimating realized volatilities, a simple discrete time model is presented in order to motivate the main results. A continuous time specification provides...
Persistent link: https://www.econbiz.de/10011807355
In this paper we propose a flexible model to capture nonlinearities and long-range dependence in time series dynamics. The new model is a multiple regime smooth transition extension of the Heterogenous Autoregressive (HAR) model, which is specifically designed to model the behavior of the...
Persistent link: https://www.econbiz.de/10011807368
In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from...
Persistent link: https://www.econbiz.de/10011807392
Nonlinear regression models have been widely used in practice for a variety of time series and cross-section datasets. For purposes of analyzing univariate and multivariate time series data, in particular, Smooth Transition Regression (STR) models have been shown to be very useful for...
Persistent link: https://www.econbiz.de/10011807395
Nonlinear time series models, especially those with regime-switching and GARCH errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with little theoretical or statistical...
Persistent link: https://www.econbiz.de/10011933956
Persistent link: https://www.econbiz.de/10011807281
This paper is concerned with modelling time series by single hidden layer feedforward neural network models. A coherent modelling strategy based on statistical inference is presented. Variable selection is carried out using existing techniques. The problem of selecting the number of hidden units...
Persistent link: https://www.econbiz.de/10011807289
In the present work, a tree-based model that combines aspects of CART (Classification and Regression Trees) and STR (Smooth Transition Regression) is proposed. The main idea relies on specifying a parametric nonlinear model through a tree-growing procedure. The resulting model can be analysed...
Persistent link: https://www.econbiz.de/10011807297
In this paper, the Local Global Neural Networks model is proposed within the context of time series models. This formulation encompasses some already existing nonlinear models and also admits the Mixture of Experts approach. We place emphasis on the linear expert case and extensively discuss the...
Persistent link: https://www.econbiz.de/10011807298
In this paper we examine the forecast accuracy of linear autoregressive, smooth transition autoregressive (STAR), and neural network (NN) time series models for 47 monthly macroeconomic variables of the G7 economies. Unlike previous studies that typically consider multiple but fixed model...
Persistent link: https://www.econbiz.de/10011807313