Showing 1 - 10 of 212
Many seasonal macroeconomic time series are subject to changes in their means and variances over a long time horizon. In this paper we propose a general treatment for the modelling of time-varying features in economic time series. We show that time series models with mean and variance functions...
Persistent link: https://www.econbiz.de/10011256745
This discussion paper led to an article in the <I>Oxford Bulletin of Economics and Statistics</I> (2009). Vol. 71, pages 683-713.<P> This paper discusses identification, specification, estimation and forecasting for a general class of periodic unobserved components time series models with stochastic...</p></i>
Persistent link: https://www.econbiz.de/10011256849
Accepted by the <Journal of Empirical Finance</I>.<P> We develop a new simultaneous time series model for volatility and dependence with long memory (fractionally integrated) dynamics and heavy-tailed densities. Our new multivariate model accounts for typical empirical features in financial time series while being robust to...</p></journal>
Persistent link: https://www.econbiz.de/10011256962
We propose a new approach to deal with structural breaks in time series models. The key contribution is an alternative dynamic stochastic specification for the model parameters which describes potential breaks. After a break new parameter values are generated from a so-called baseline prior...
Persistent link: https://www.econbiz.de/10011257521
This discussion paper led to a publication in <A href="http://www.tandfonline.com/doi/abs/10.1198/jbes.2011.10070">'Journal of Business & Economic Statistics'</A>, 29(4), 552-63.<P>We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts...</p></a>
Persistent link: https://www.econbiz.de/10011257658
This paper discusses identification, specification, estimation and forecasting for a general class of periodic unobserved components time series models with stochastic trend, seasonal and cycle components. Convenient state space formulations are introduced for exact maximum likelihood...
Persistent link: https://www.econbiz.de/10005137026
Novel periodic extensions of dynamic long memory regression models with autoregressive conditional heteroskedastic errors are considered for the analysis of daily electricity spot prices. The parameters of the model with mean and variance specifications are estimated simultaneously by the method...
Persistent link: https://www.econbiz.de/10005144404
We propose a new class of observation driven time series models referred to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled score of the likelihood function. This approach provides a unified and consistent framework for introducing...
Persistent link: https://www.econbiz.de/10005209514
We develop a new simultaneous time series model for volatility and dependence with long memory (fractionally integrated) dynamics and heavy-tailed densities. Our new multivariate model accounts for typical empirical features in financial time series while being robust to outliers or jumps in the...
Persistent link: https://www.econbiz.de/10009386532
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10008838568