Showing 1 - 4 of 4
With the aim to mitigate the possibleproblem of negativity in the estimation of the conditionaldensity function, we introduce a so-called re-weightedNadaraya-Watson (RNW) estimator. The proposed RNWestimator is constructed by a slight modificationof the well-known Nadaraya-Watson...
Persistent link: https://www.econbiz.de/10011256515
In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By...
Persistent link: https://www.econbiz.de/10011257207
In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By...
Persistent link: https://www.econbiz.de/10008513237
With the aim to mitigate the possible problem of negativity in the estimation of the conditional density function, we introduce a so-called re-weighted Nadaraya-Watson (RNW) estimator. The proposed RNW estimator is constructed by a slight modification of the well-known Nadaraya-Watson smoother....
Persistent link: https://www.econbiz.de/10005144525