Showing 1 - 10 of 30
This paper proposes a Bayesian estimation framework for a typical multi-factor model with time-varying risk exposures to macroeconomic risk factors and corresponding premia to price U.S. stocks and bonds. The model assumes that risk exposures and idiosynchratic volatility follow a break-point...
Persistent link: https://www.econbiz.de/10010787769
We use Bayesian methods to estimate a multi-factor linear asset pricing model characterized by structural instability in factor loadings, idiosyncratic variances, and factor risk premia. We use such a framework to investigate the key differences in the pricing mechanism that applies to...
Persistent link: https://www.econbiz.de/10010787772
This paper uses a multi-factor pricing model with time-varying risk exposures and premia to examine whether the 2003-2006 period has been characterized, as often claimed by a number of commentators and policymakers, by a substantial missprcing of publicly traded real estate assets (REITs). The...
Persistent link: https://www.econbiz.de/10009393966
This paper examines the predictive power of weather for electricity prices in day-ahead markets in real time. We find that next-day weather forecasts improve the forecast accuracy of day-ahead electricity prices substantially, suggesting that weather forecasts can price the weather premium....
Persistent link: https://www.econbiz.de/10005481438
We argue that the next generation of macro modellers at Inflation Targeting central banks should adapt a methodology from the weather forecasting literature known as `ensemble modelling'. In this approach, uncertainty about model specifications (e.g., initial conditions, parameters, and boundary...
Persistent link: https://www.econbiz.de/10004976646
We propose a novel Bayesian model combination approach where the combination weights depend on the past forecasting performance of the individual models entering the combination through a utility-based objective function. We use this approach in the context of stock return predictability and...
Persistent link: https://www.econbiz.de/10011162487
We introduce a Combined Density Nowcasting (CDN) approach to Dynamic Factor Models (DFM) that in a coherent way accounts for time-varying uncertainty of several model and data features in order to provide more accurate and complete density nowcasts. The combination weights are latent random...
Persistent link: https://www.econbiz.de/10011124200
A long strand of literature has shown that the world has become more global. Yet, the recent Great Global Recession turned out to be hard to predict, with forecasters across the world committing large forecast errors. We examine whether knowledge of in-sample co-movement across countries could...
Persistent link: https://www.econbiz.de/10011208180
We introduce a Bayesian approach to predictive density calibration and combination that accounts for parameter uncertainty and model set incompleteness through the use of random calibration functionals and random combination weights. Building on the work of Ranjan and Gneiting (2010) and...
Persistent link: https://www.econbiz.de/10011189239
We estimate demand, supply, monetary, investment and financial shocks in a VAR identified with a minimum set of sign restrictions on US data. We find that financial shocks are major drivers of fluctuations in output, stock prices and investment but have a limited effect on inflation. In a second...
Persistent link: https://www.econbiz.de/10010800723