Showing 1 - 10 of 128
Due to the increasing availability of high-dimensional empirical applications in many research disciplines, valid simultaneous inference becomes more and more important. For instance, high-dimensional settings might arise in economic studies due to very rich data sets with many potential...
Persistent link: https://www.econbiz.de/10012146382
In this note, we offer an approach to estimating structural parameters in the presence of many instruments and controls based on methods for estimating sparse high-dimensional models. We use these high-dimensional methods to select both which instruments and which control variables to use. The...
Persistent link: https://www.econbiz.de/10011445719
Graphical models have become a very popular tool for representing dependencies within a large set of variables and are key for representing causal structures. We provide results for uniform inference on high-dimensional graphical models with the number of target parameters d being possible much...
Persistent link: https://www.econbiz.de/10012146381
Here we present an expository, general analysis of valid post-selection or post-regularization inference about a low-dimensional target parameter in the presence of a very high-dimensional nuisance parameter which is estimated using selection or regularization methods. Our analysis provides a...
Persistent link: https://www.econbiz.de/10011594345
In this article the package High-dimensional Metrics (hdm) is introduced. It is a collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for...
Persistent link: https://www.econbiz.de/10011594346
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10010288296
We develop results for the use of LASSO and Post-LASSO methods to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, p, that apply even when p is much larger than the sample size, n. We rigorously develop asymptotic...
Persistent link: https://www.econbiz.de/10010288391
This paper gives identification and estimation results for quantile and average effects in nonseparable panel models, when the distribution of period specific disturbances does not vary over time. Bounds are given for interesting effects with discrete regressors that are strictly exogenous or...
Persistent link: https://www.econbiz.de/10010288429
Shape restrictions have played a central role in economics as both testable implications of theory and sufficient conditions for obtaining informative counterfactual predictions. In this paper we provide a general procedure for inference under shape restrictions in identified and partially...
Persistent link: https://www.econbiz.de/10014302506
We develop a distribution regression model under endogenous sample selection. This model is a semi-parametric generalization of the Heckman selection model. It accommodates much richer effects of the covariates on outcome distribution and patterns of heterogeneity in the selection process, and...
Persistent link: https://www.econbiz.de/10014480516